• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Improving prediction accuracy of adverse events in radiation therapy using machine learning

Research Project

Project/Area Number 20K16708
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKeio University

Principal Investigator

Fukata Kyohei  慶應義塾大学, 医学部(信濃町), 共同研究員 (00647266)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords放射線治療 / 医学物理学 / 有害事象予測 / 機械学習
Outline of Research at the Start

放射線治療はがん治療の三本柱の一つを担う治療法である。高エネルギーの放射線を使用するので,腫瘍周辺の正常臓器にも線量を与えてしまうのは避けられない。これら正常臓器に「どれだけ放射線が当たればどれくらいの確率で有害事象が発生するか」を正確に予測することができれば,放射線治療の質を向上することが可能である。
現在,有害事象予測モデルとして使用される頻度が最も高いものは,「臓器のどれだけの体積にどれくらいの線量が投与されたか」に基づいて有害事象を予測する。
本研究では,臓器の体積と線量だけでなく,これに局所的な位置情報も織り込むことで有害事象予測モデルの予測精度向上をめざす。

Outline of Final Research Achievements

If we can use machine learning to accurately predict adverse events that occur during radiation therapy, we believe that it will be possible to formulate treatment plans that avoid them. We clarified the relationship between the radiation dose to the heart and adverse events in patients who had undergone treatment for the esophagus in the past. We also used a machine learning-based model to examine the influence of rectal dose during heavy ion radiotherapy to the prostate on rectal adverse events.

Academic Significance and Societal Importance of the Research Achievements

放射線治療を行う上で、有害事象の一定確率での発生は避けることができないのが事実である。本研究では、放射線治療の線量分布に基づく有害事象の予測確率を示した。今後は有害事象の確率を下げるにはどのように治療計画を行えばよいのか、といった議論が期待される。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (2 results)

All 2021

All Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 2 results)

  • [Journal Article] Mean heart dose-based normal tissue complication probability model for pericardial effusion: a study in oesophageal cancer patients2021

    • Author(s)
      Fukada Junichi、Fukata Kyohei、Koike Naoyoshi、Kota Ryuichi、Shigematsu Naoyuki
    • Journal Title

      Scientific Reports

      Volume: 11 Issue: 1 Pages: 18166-18166

    • DOI

      10.1038/s41598-021-97605-9

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Retrospective comparison of rectal toxicity between carbon-ion radiotherapy and intensity-modulated radiation therapy based on treatment plan, normal tissue complication probability model, and clinical outcomes in prostate cancer2021

    • Author(s)
      Fukata Kyohei、Kawamura Hidemasa、Kubo Nobuteru、Kanai Tatsuaki、Torikoshi Masami、Nakano Takashi、Tashiro Mutsumi、Ohno Tatsuya
    • Journal Title

      Physica Medica

      Volume: 90 Pages: 6-12

    • DOI

      10.1016/j.ejmp.2021.08.013

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi