• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Automatic treatment planning based on patient-specific dose distribution using deep learning

Research Project

Project/Area Number 20K16742
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKansai Medical University

Principal Investigator

KOIKE Yuhei  関西医科大学, 医学部, 助教 (90866154)

Project Period (FY) 2020-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords医学物理 / 高精度放射線治療 / 個別化治療 / 人工知能 / 深層学習 / 機械学習 / 適応放射線治療 / 線量分布予測 / 放射線治療 / 治療計画
Outline of Research at the Start

放射線治療における治療計画の質は生存率に影響を及ぼす。特に近年の強度変調放射線治療の治療計画は時間のかかるプロセスであり、立案する治療計画の質は計画者や費やした時間に大きく依存する。本研究では、治療計画の効率化・均質化を目指し、深層学習に基づく自動治療計画法を開発する。解剖学的情報から線量分布を推定する深層学習モデルを構築し、その線量分布に基づく自動治療計画法の基盤構築・精度検証を目的とする。学習・検証用患者データの収集、学習用データによるモデル構築ならびにパラメータの調整、検証用データを用いた線量分布の推定を行い、物理的・臨床的な評価を行う。

Outline of Final Research Achievements

By applying artificial intelligence, we have developed a method for estimating patient-specific dose distribution in radiotherapy based on CT images and individual patient anatomical information. In this study, a new loss function based on each input contour was introduced for prostate cancer cases, and a prediction model with higher accuracy than the conventional method was successfully constructed. We believe that the automatic treatment planning method based on deep learning developed in this work will contribute to a new technology for adaptive radiotherapy that can cope with daily changes in body shape and organ location during radiotherapy.

Academic Significance and Societal Importance of the Research Achievements

人工知能の回帰問題では損失関数として一般的に平均二乗誤差が用いられているが、本研究では、入力する臓器の輪郭内の誤差が最小となるような損失関数を新たに導入することで精度の高い線量分布を作成した。開発した方法は、従来の線量体積ヒストグラムに基づく最適化で考慮されていなかった空間情報を加味した最適化法である。本研究成果の応用が期待される適応放射線治療において、その時の体型や臓器の位置に応じた線量分布が短時間で推定可能となる。治療効果の向上、有害事象の低減が期待でき、社会的意義も大きい。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (6 results)

All 2023 2022 2021 2020

All Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results) Presentation (1 results)

  • [Journal Article] Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment2023

    • Author(s)
      Kihara Sayaka、Koike Yuhei、Takegawa Hideki、Anetai Yusuke、Nakamura Satoaki、Tanigawa Noboru、Koizumi Masahiko
    • Journal Title

      Medical Dosimetry

      Volume: 48 Issue: 1 Pages: 20-24

    • DOI

      10.1016/j.meddos.2022.09.004

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Patient-specific three-dimensional dose distribution prediction via deep learning for prostate cancer therapy: Improvement with the structure loss2023

    • Author(s)
      Koike Yuhei、Takegawa Hideki、Anetai Yusuke、Ohira Shingo、Nakamura Satoaki、Tanigawa Noboru
    • Journal Title

      Physica Medica

      Volume: 107 Pages: 102544-102544

    • DOI

      10.1016/j.ejmp.2023.102544

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Artificial intelligence-aided lytic spinal bone metastasis classification on CT scans2023

    • Author(s)
      Koike Yuhei、Yui Midori、Nakamura Satoaki、Yoshida Asami、Takegawa Hideki、Anetai Yusuke、Hirota Kazuki、Tanigawa Noboru
    • Journal Title

      International Journal of Computer Assisted Radiology and Surgery

      Volume: - Issue: 10 Pages: 1867-1874

    • DOI

      10.1007/s11548-023-02880-8

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Pseudo low-energy monochromatic imaging of head and neck cancers: Deep learning image reconstruction with dual-energy CT2022

    • Author(s)
      Yuhei Koike, Shingo Ohira, Yuri Teraoka, Ayako Matsumi, Yasuhiro Imai, Yuichi Akino, Masayoshi Miyazaki, Satoaki Nakamura, Koji Konishi, Noboru Tanigawa, Kazuhiko Ogawa
    • Journal Title

      International Journal of Computer Assisted Radiology and Surgery

      Volume: - Issue: 7 Pages: 1271-1279

    • DOI

      10.1007/s11548-022-02627-x

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Deep learning-based metal artifact reduction using cycle-consistent adversarial network for intensity-modulated head and neck radiation therapy treatment planning2020

    • Author(s)
      Koike Yuhei, Anetai Yusuke, Takegawa Hideki, Ohira Shingo, Nakamura Satoaki, Tanigawa Noboru
    • Journal Title

      Physica Medica

      Volume: 78 Pages: 8-14

    • DOI

      10.1016/j.ejmp.2020.08.018

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 頭頸部放射線治療のための深層学習によるGTVに基づいたCTVセグメンテーション2021

    • Author(s)
      木原 彩花、小池 優平、武川 英樹、姉帯 優介、中村 聡明、谷川 昇、高橋 豊、小泉 雅彦
    • Organizer
      第34回高精度放射線外部照射部会学術大会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi