• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Comparison of Computational Limits Based on Memory Access Count in Logarithmic Space Computation Models

Research Project

Project/Area Number 20K19741
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionOchanomizu University

Principal Investigator

NAGAO Atsuki  お茶の水女子大学, 基幹研究院, 講師 (20802622)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords領域計算量 / 対数領域計算モデル / 分岐プログラム / 木構造関数値評価問題 / 一回読み制限 / 計算量クラスの分離 / 計算量理論 / 充足可能性問題 / アルゴリズム / 厳密アルゴリズム / Sub-SAT / Read-k-time
Outline of Research at the Start

計算の複雑さの階層を解析する学問が計算量理論である.本研究では対数領域計算モデルに焦点を当て,メモリの読み込み回数の制限の有無が計算モデルの持つ性能に差異を生むかどうかを解析する.本研究の究極の目的は対数領域計算クラスと多項式時間計算クラスの分離である.

Outline of Final Research Achievements

This study explores the computational limits of logarithmic space computing models by focusing on models with restrictions on memory access counts. We conducted an analysis of the computational complexity for functions and their variants that are believed to be uncomputable in such models. As a result, we extended the proposition that the size lower bound of Semantic Read-once branching programs solving tree evaluation problems on ternary trees, as demonstrated in existing research, becomes super-polynomial. Actually, we showed that the size lower bound of Semantic Read-once branching programs for tree evaluation problems on quinary trees also becomes super-polynomial.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果により、対数領域計算限界の解明に向けて一つの足がかりを構築することができたと言える。究極的な解明が行われた際の学術的意義として、計算モデルの限界がより明確に整理され、計算の特徴による複雑さの区分けがより明確になることが挙げられる。その解明が他の計算クラスにまで波及することも考えられ、その際は量子コンピュータ等の計算限界の解明等に繋がれば、それが実装された社会における暗号技術の基盤の創成になるなどの社会的意義も考えられる。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (2 results)

All 2022 2020

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results)

  • [Journal Article] A Satisfiability Algorithm for Deterministic Width-2 Branching Programs2022

    • Author(s)
      Tomu MAKITA, Atsuki NAGAO, Tatsuki OKADA, Kazuhisa SETO, Junichi TERUYAMA
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

      Volume: E105.A Issue: 9 Pages: 1298-1308

    • DOI

      10.1587/transfun.2021EAP1120

    • ISSN
      0916-8508, 1745-1337
    • Year and Date
      2022-09-01
    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Satisfiability Algorithm for Syntactic Read-k-times Branching Programs2020

    • Author(s)
      Atsuki Nagao, Kazuhisa Seto, and Junichi Teruyama
    • Journal Title

      Theory of Computing Systems

      Volume: 64 Issue: 8 Pages: 1392-1407

    • DOI

      10.1007/s00224-020-09996-3

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi