• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Benchmark for Video-Like Urban Computing on Citywide Crowd and Traffic Prediction

Research Project

Project/Area Number 20K19859
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionThe University of Tokyo

Principal Investigator

JIANG Renhe  東京大学, 情報基盤センター, 助教 (20865266)

Project Period (FY) 2020-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
KeywordsSmart City / Spatiotemporal Data / Deep Learning / Transportation / Urban Mobility / Crowd Flow / Benchmark / Traffic Prediction / Crowd Prediction / Graph Neural Networks / smart city / society 5.0 / crowd density / crowd flow / human mobility / データ駆動型AI / 人流予測 / スマートシティ
Outline of Research at the Start

ビッグデータや最先端のAI技術を駆使することで、都市規模で群集や交通の密度や流れを予測することが可能になる。これは社会に強く影響する非常に重要な研究テーマであり、緊急管理や交通規制、都市計画など幅広く応用できる。大規模な都市区域を数々のきめ細かいメッシュグリッドへとメッシングすることで、連続的な期間における都市全体の群集や交通情報を映像のように表現し、各タイムスタンプを一枚の映像フレームとして扱うことができる。この考え方に基づき、都市全体の群集や交通に関する映像型の予測に対応するため一連の手法を提案・評価する。

Outline of Final Research Achievements

Predicting the density and flow of the crowd or traffic at a citywide level becomes possible by using the big data and cutting-edge AI technologies. It has been a very significant research topic with high social impact, which can be widely applied to emergency management, traffic regulation, and urban planning. By meshing a large urban area to a number of fine-grained mesh-grids, citywide crowd and traffic information in a continuous time period can be represented like a video, where each timestamp can be seen as one video frame. Based on this idea, a series of methods have been proposed to address video-like prediction for citywide crowd and traffic. Through this research, we build a standard benchmark for such kind of urban computing problems based on multiple open datasets. The research achievement was awarded by CIKM 2021 Best Resource Paper Runner-Up.

Academic Significance and Societal Importance of the Research Achievements

近年、IoT(Internet of Things:モノのインターネット)、ビッグデータ、人工知能技術の急速な発展に伴い、スマートシティは新しい科学技術分野として各国の学術界、産業界および各国政府から非常に重視されている。そこで、人を中核としたスマートシティの実現に最も重要な研究課題と技術は、都市規模の人流・交通流の知覚、分析、シミュレーション、予測である。本研究提案をスマートシティ構築のためのキーテクノロジーと位置づけ、Japan Society 5.0の実現に大きく貢献し、画像処理と自然言語処理以外の人工知能・データサイエンス研究を大きく発展させることを期待するものである。

Report

(3 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • Research Products

    (12 results)

All 2022 2021 2020 Other

All Journal Article (6 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (1 results) Remarks (5 results)

  • [Journal Article] Predicting Citywide Crowd Dynamics at Big Events: A Deep Learning System2022

    • Author(s)
      Jiang Renhe、Cai Zekun、Wang Zhaonan、Yang Chuang、Fan Zipei、Chen Quanjun、Song Xuan、Shibasaki Ryosuke
    • Journal Title

      ACM Transactions on Intelligent Systems and Technology

      Volume: 13 Issue: 2 Pages: 1-24

    • DOI

      10.1145/3472300

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] DL-Traff: Survey and Benchmark of Deep Learning Models for Urban Traffic Prediction2021

    • Author(s)
      Jiang Renhe、Yin Du、Wang Zhaonan、Wang Yizhuo、Deng Jiewen、Liu Hangchen、Cai Zekun、Deng Jinliang、Song Xuan、Shibasaki Ryosuke
    • Journal Title

      Proceedings of 30th ACM International Conference on Information and Knowledge Management (CIKM)

      Volume: - Pages: 4515-4525

    • DOI

      10.1145/3459637.3482000

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Spatio-Temporal-Categorical Graph Neural Networks for Fine-Grained Multi-Incident Co-Prediction2021

    • Author(s)
      Wang Zhaonan、Jiang Renhe、Cai Zekun、Fan Zipei、Liu Xin、Kim Kyoung-Sook、Song Xuan、Shibasaki Ryosuke
    • Journal Title

      Proceedings of 30th ACM International Conference on Information and Knowledge Management (CIKM)

      Volume: - Pages: 2060-2069

    • DOI

      10.1145/3459637.3482482

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Forecasting Ambulance Demand with Profiled Human Mobility via Heterogeneous Multi-Graph Neural Networks2021

    • Author(s)
      Wang Zhaonan、Xia Tianqi、Jiang Renhe、Liu Xin、Kim Kyoung-Sook、Song Xuan、Shibasaki Ryosuke
    • Journal Title

      Proceedings of the 37th IEEE International Conference on Data Engineering (ICDE)

      Volume: - Pages: 1751-1762

    • DOI

      10.1109/icde51399.2021.00154

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Transfer Urban Human Mobility via POI Embedding over Multiple Cities2021

    • Author(s)
      Jiang Renhe、Song Xuan、Fan Zipei、Xia Tianqi、Wang Zhaonan、Chen Quanjun、Cai Zekun、Shibasaki Ryosuke
    • Journal Title

      ACM/IMS Transactions on Data Science

      Volume: 2 Issue: 1 Pages: 1-26

    • DOI

      10.1145/3416914

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] DeepCrowd: A Deep Model for Large-Scale Citywide Crowd Density and Flow Prediction2021

    • Author(s)
      Jiang Renhe、Cai Zekun、Wang Zhaonan、Yang Chuang、Fan Zipei、Chen Quanjun、Tsubouchi Kota、Song Xuan、Shibasaki Ryosuke
    • Journal Title

      IEEE Transactions on Knowledge and Data Engineering

      Volume: - Pages: 1-1

    • DOI

      10.1109/tkde.2021.3077056

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] DualSIN: Dual Sequential Interaction Network for Human Intentional Mobility Prediction2020

    • Author(s)
      Chen Quanjun、Jiang Renhe、Yang Chuang、Cai Zekun、Fan Zipei、Tsubouchi Kota、Shibasaki Ryosuke、Song Xuan
    • Organizer
      SIGSPATIAL '20: Proceedings of the 28th International Conference on Advances in Geographic Information Systems
    • Related Report
      2020 Research-status Report
  • [Remarks] Renhe Jiang's Homepage

    • URL

      https://www.renhejiang.com/

    • Related Report
      2021 Annual Research Report
  • [Remarks] DL-Traff Benchmark

    • URL

      https://github.com/deepkashiwa20/DL-Traff-Graph

    • Related Report
      2021 Annual Research Report
  • [Remarks] DL-Traff Benchmark

    • URL

      https://github.com/deepkashiwa20/DL-Traff-Grid

    • Related Report
      2021 Annual Research Report
  • [Remarks] CIKM2021受賞ニュース

    • URL

      https://www.itc.u-tokyo.ac.jp/academic/2021/12/17/post-369/

    • Related Report
      2021 Annual Research Report
  • [Remarks] CIKM2021 DL-Traff Paper

    • URL

      https://dl.acm.org/doi/abs/10.1145/3459637.3482000

    • Related Report
      2021 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi