• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Verification of the utility of interactive three-dimensional telemedicine system between neurologists and patients with Parkinson's disease at home

Research Project

Project/Area Number 20K20229
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 90130:Medical systems-related
Research InstitutionJuntendo University

Principal Investigator

Sekimoto Satoko  順天堂大学, 医学部, 非常勤助教 (20848303)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2021: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords遠隔医療 / パーキンソン病 / 三次元動作解析 / 人工知能 / 運動障害疾患 / 深層学習 / 運動障害性疾患 / 複合現実
Outline of Research at the Start

パーキンソン病(PD)は多彩な運動症状を呈する神経変性疾患であり、進行期には専門医療機関への通院が困難となり、寝たきりとなるリスクが高い。申請者は、運動症状を三次元的に動作解析した上で診療を提供する方法として、患者の動作・姿勢に関する三次元情報をもとにヘッドマウントディスプレイを通して遠隔で医師の目前に患者の3Dホログラム画像を投影するシステムを開発した。本研究は、当該システムを通じた「PDの長期間のケア」で患者の症状は安定化するのか、その有用性の実証に向けて、医師-自宅にいる患者間の双方向性三次元遠隔診療の実証研究を行う。本研究で得られた成果により、PDに対する診療の底上げ・均質化を目指す。

Outline of Final Research Achievements

To assist non-specialists in evaluating patients with Parkinson's disease who have difficulty visiting specialists’ hospitals, we developed an algorithm to automatically rate the severity of motor symptoms of Parkinson's disease. This study aims to assess the accuracy of this algorithm. Four items of the MDS-UPDRS part III were considered in this study: right toe-tapping, left toe-tapping, right lower limb agility, and left lower limb agility. The algorithm's accuracy was evaluated using the neurologist's evaluation as the gold standard. The accuracy were 0.828 for right toe-tapping, 0.690 for left toe- tapping, 0.862 for right lower limb agility, and 0.724 for left lower limb agility. The results show that this algorithm can estimate whether patients with Parkinson's disease have mild symptoms with high accuracy.

Academic Significance and Societal Importance of the Research Achievements

研究成果であるパーキンソン病の症状自動判定アルゴリズムについては、パーキンソン病の軽症例に対しては、専門医でなくとも症状を高い精度で評価できる。今後MDS-UPDRS partⅢの他の項目の評価や、重症例のデータ蓄積を行うことで、本アルゴリズムを用いたオンライン診療が、脳神経内科専門医への通院が困難な患者に対しても、症状に応じた適切なケアを提供できるようになる。適切なケアの提供は、進行期パーキンソン病患者の生活の質向上に寄与する。

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (5 results)

All 2023 2020

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Holomedicine: Proof of the Concept of Interactive Three‐Dimensional Telemedicine2020

    • Author(s)
      Sekimoto Satoko、Oyama Genko、Chiba Shinji、Nuermaimaiti Maierdanjiang、Sasaki Fuyuko、Hattori Nobutaka
    • Journal Title

      Movement Disorders

      Volume: 35 Issue: 10 Pages: 1719-1720

    • DOI

      10.1002/mds.28249

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] An Algorithm for Automatically Assessing Parkinson's Disease-Related Motor Symptoms2023

    • Author(s)
      Satoko Sekimoto, Genko Oyama, Yuta Nonomiya, Tatsunaga Hayashi, Mano Soshi, Shinji Chiba, Nobutaka Hattori
    • Organizer
      The 4th International Taiwanese Congress of Neurology 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of an Algorithm to Automatically Assess Motor Symptoms of Parkinson's Disease2023

    • Author(s)
      Satoko Sekimoto, Genko Oyama, Yuta Nonomiya, Tatsunaga Hayashi, Mano Soshi, Shinji Chiba, Nobutaka Hattori
    • Organizer
      第64回日本神経学会学術大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Development and Validation of an Algorithm to Automatically Assess Motor Symptoms of Parkinson's Disease2023

    • Author(s)
      Satoko Sekimoto, Genko Oyama, Yuta Nonomiya, Tatsunaga Hayashi, Mano Soshi, Shinji Chiba, Nobutaka Hattori
    • Organizer
      International Congress of Parkinson's Disease and Movement Disorders 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] An Algorithm for Automatically Assessing Parkinson's Disease-Related Motor Symptoms2023

    • Author(s)
      Satoko Sekimoto
    • Organizer
      The 4th International Taiwanese Congress of Neurology 2023
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi