• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Generalized Hodge conjecture and Lefschetz-Milnor theory for Hilbert schemes

Research Project

Project/Area Number 20K20879
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 11:Algebra, geometry, and related fields
Research InstitutionHiroshima University

Principal Investigator

Shimada Ichiro  広島大学, 先進理工系科学研究科(理), 教授 (10235616)

Project Period (FY) 2020-07-30 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords周期 / ホモロジー群 / 二重平面 / Hodge 構造 / 消失サイクル / 直線配置 / 二重被覆平面 / K3曲面 / Niemeier 格子 / Leech格子 / extremal 格子 / 計算機代数 / 自己準同型環 / ホッジ予想 / ヒルベルトスキーム / 完全交叉
Outline of Research at the Start

一般ホッジ予想は,複素射影代数多様体のホッジ構造から部分多様体の存在が導けるとする予想であり,代数幾何学におけるきわめて重要な問題の一つであるが,この予想が確かめられている非自明な例はごくわずかしかない.複素射影代数多様体には,その部分多様体全体をパラメトライズするヒルベルトスキームという代数多様体が付随している.複素射影代数多様体が退化するとき,そのヒルベルトスキームも新たな特異点をもつ.この研究は複素射影代数多様体の退化とそのヒルベルトスキームの退化を比較することにより,一般ホッジ予想が成立する例を系統的に構成する方法を確立することである.

Outline of Final Research Achievements

The Hodge structure is an important invariant of complex algebraic varieties, and is used to formulate the general Hodge conjecture, which connects the topological data of the cohomology ring of a complex algebraic variety with the algebraic data of its families of subvarieties. The goal of this research is to investigate this Hodge structure in detail for some examples of concrete complex algebraic varieties. In particular, we studied topological cycles of algebraic varieties with the aim of applying them to the determination of Hodge structures by numerical computation of periods, which has become practical in recent years due to the development of computers.In particular, we describe the middle homology group of a double affine plane branched in a nodal real arrangement.

Academic Significance and Societal Importance of the Research Achievements

Hodge 予想は クレイ研究所が発表したミレニアム問題の一つであり,コホモロジー環のHodge 構造という複素代数多様体の線形的なデータからもとの複素代数多様体の部分多様体がどれだけ復元できるかということについての予想である.計算機の性能の向上により,具体的な複素代数多様体に対して,Hodge 構造,すなわち周期に数値的にアプローチする方法が開かれた.この研究においては,このアプローチの一例としてある代数曲面に対しその中間次元のホモロジー群を明示的に記述した.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (22 results)

All 2024 2023 2022 2021 2020 Other

All Int'l Joint Research (3 results) Journal Article (8 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 8 results,  Open Access: 7 results) Presentation (6 results) (of which Int'l Joint Research: 5 results,  Invited: 6 results) Remarks (3 results) Funded Workshop (2 results)

  • [Int'l Joint Research] Stuttgart University(ドイツ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University of Padua(イタリア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Dalat University(ベトナム)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] On Characteristic Polynomials of Automorphisms of Enriques Surfaces2023

    • Author(s)
      Simon Brandhorst, Slawomir Rams, Ichiro Shimada
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 59 Issue: 3 Pages: 633-656

    • DOI

      10.4171/prims/59-3-7

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A note on Quebbemann’s extremal lattices of rank 642023

    • Author(s)
      Shimada Ichiro
    • Journal Title

      Journal de theorie des nombres de Bordeaux

      Volume: 34 Issue: 3 Pages: 813-826

    • DOI

      10.5802/jtnb.1229

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Zariski multiples associated with quartic curves2022

    • Author(s)
      Shimada Ichiro
    • Journal Title

      Journal of Singularities

      Volume: 24 Pages: 169-189

    • DOI

      10.5427/jsing.2022.24g

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Borcherds’ Method for Enriques Surfaces2022

    • Author(s)
      Brandhorst Simon、Shimada Ichiro
    • Journal Title

      Michigan Mathematical Journal

      Volume: 71 Issue: 1 Pages: 3-18

    • DOI

      10.1307/mmj/20195769

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A note on Quebbemann's extremal lattices of rank 642022

    • Author(s)
      Ichiro Shimada
    • Journal Title

      Journal de Theorie des Nombres de Bordeaux

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Rational double points on Enriques surfaces2021

    • Author(s)
      Ichiro Shimada
    • Journal Title

      Sci. China Math.

      Volume: 64 Issue: 4 Pages: 665-690

    • DOI

      10.1007/s11425-019-1796-x

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Automorphism Groups of Certain Enriques Surfaces2021

    • Author(s)
      Brandhorst Simon、Shimada Ichiro
    • Journal Title

      Foundations of Computational Mathematics

      Volume: -- Issue: 5 Pages: 1463-1512

    • DOI

      10.1007/s10208-021-09530-y

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] The elliptic modular surface of level 4 and its reduction modulo 32020

    • Author(s)
      Ichiro Shimada
    • Journal Title

      Annali di Matematica Pura ed Applicata

      Volume: - Issue: 4 Pages: 1457-1489

    • DOI

      10.1007/s10231-019-00927-9

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] The automorphism group of a K3 surface birational to a double plane2022

    • Author(s)
      Ichiro Shimada
    • Organizer
      Real Aspects of Geometry
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Mordell-Weil groups of a certain K3 surface2022

    • Author(s)
      Ichiro Shimada
    • Organizer
      Recent Development in Algebraic Geometry
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] あるK3曲面の自己同型群について2022

    • Author(s)
      Ichiro Shimada
    • Organizer
      K3, Enriques Surfaces, and Related Topics
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Automorphism groups of Enriques surfaces (joint work with Simon Brandhorst)2022

    • Author(s)
      Ichiro Shimada
    • Organizer
      Japanese-European Symposium on Symplectic Varieties and Moduli Spaces -- Sixth Edition
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Computation of automorphism groups of Enriques surfaces (joint work with Simon Brandhorst)2021

    • Author(s)
      Ichiro Shimada
    • Organizer
      ODTU-Bilkent Algebraic Geometry Seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Computation of the nef cone and the automorphism group of an Enriques surface (joint work with Simon Brandhorst)2021

    • Author(s)
      Ichiro Shimada
    • Organizer
      Online Workshop on Calabi-Yau Varieties and Related Topics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Computation Data

    • URL

      https://home.hiroshima-u.ac.jp/ichiro-shimada/ComputationData.html

    • Related Report
      2023 Annual Research Report
  • [Remarks] Computational data on lattices

    • URL

      http://www.math.sci.hiroshima-u.ac.jp/shimada/lattice.html

    • Related Report
      2022 Research-status Report 2021 Research-status Report
  • [Remarks] Computational data of K3 surfaces

    • URL

      http://www.math.sci.hiroshima-u.ac.jp/shimada/K3andEnriques.html

    • Related Report
      2022 Research-status Report
  • [Funded Workshop] 第6回トロピカル幾何ワークショップ2024

    • Related Report
      2023 Annual Research Report
  • [Funded Workshop] Workshop "Topology of Singularities and Related Topics"2023

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2020-08-03   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi