• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classical dynamics of infinite particle systems

Research Project

Project/Area Number 20K20885
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 12:Analysis, applied mathematics, and related fields
Research InstitutionChubu University (2022)
Kyushu University (2020-2021)

Principal Investigator

Osada Hirofumi  中部大学, 工学部, 教授 (20177207)

Project Period (FY) 2020-07-30 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2020: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords無限粒子系 / ランダム行列 / 古典力学 / 確率力学 / 無限次元確率微分方程式 / エルゴード理論 / Dysonモデル / ダイソンモデル / エルゴード性 / 既約性 / 統計物理 / 無限次元常微分方程式 / 無限次元力学系 / 統計力学 / 低粘性極限 / 干渉ブラウン運動 / 勾配系
Outline of Research at the Start

世界の未来はもう決まっているのだろうか。これは古典力学の出現以来、綿々と続く問いである。一つの物体(粒子)の運動は、古典(ニュートン)力学にしたがう常微分方程式で記述される。現実の世界は膨大な数(数学的には無限個)の粒子からなり、その時間発展は、無限粒子系が満たす無限次元常微分方程式で記述される。本研究は、これを解き、統計力学的視点から研究する。

Outline of Final Research Achievements

This research aims to study the classical mechanics of infinite particle systems and takes the low-viscosity limit of solutions to infinite-dimensional stochastic differential equations. We have completed and published a paper on IFC conditions, which is essential in this study. The IFC condition is a condition for decomposing an infinite dimensional equation into a sequence of infinite finite-dimensional equations. Using this, we proved the irreducibility of the Dyson model, the stochastic mechanics of an infinite particle system related to random matrices, as a Markov process. This was proved for label dynamics because it distinguishes individual particles. Furthermore, after establishing the non-existence of an invariant probability measure of the labeled dynamics, we proved the ergodicity of unlabeled dynamics. These were published as two papers.

Academic Significance and Societal Importance of the Research Achievements

無限粒子系とは、単一もしくは少種類の粒子の莫大な量からなる系を記述する数学的対象である。従来の伝統的研究が単一もしくは少数の粒子の研究から始められたのに比して、無限粒子系の研究は集団的挙動を解明するという使命を持ち、統計物理や情報理論など多くの分野とつながっている。従来なされた豊饒な古典的研究は、一つの粒子の研究である。その無限粒子系の対応物を考えることは、新たな世界や現象を解明することにつながる。現実の世界は極めて多量の粒子からできており、それを考察するための確固たる数学的手段を構築する無限粒子系の研究は、是非やり遂げるべき課題である。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (8 results)

All 2023 2022 2021 2020 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 5 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Remarks (1 results)

  • [Journal Article] Ergodicity of unlabeled dynamics of Dyson’s model in infinite dimensions2023

    • Author(s)
      Osada Hirofumi、Osada Shota
    • Journal Title

      Journal of Mathematical Physics

      Volume: 64 Issue: 4

    • DOI

      10.1063/5.0086873

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Dyson's model in infinite dimensions is irreducible2022

    • Author(s)
      Osada Hirofumi, Tsuboi, Ryosuke
    • Journal Title

      Springer, Singapore

      Volume: 394 Pages: 401-409

    • DOI

      10.1007/978-981-19-4672-1_21

    • ISBN
      9789811946714, 9789811946721
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Infinite-dimensional stochastic differential equations and tail 𝜎-fields II: the IFC condition2022

    • Author(s)
      Kawamoto, Y. , Osada, H., Tanemura H.
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 74 Issue: 1 Pages: 79-128

    • DOI

      10.2969/jmsj/85118511

    • NAID

      130008144193

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Dynamical universality for random matrices2022

    • Author(s)
      Kawamoto, Y., Osada, H.
    • Journal Title

      Partial Differential Equations and Applications

      Volume: 3 Issue: 2 Pages: 1-51

    • DOI

      10.1007/s42985-022-00154-7

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Infinite-dimensional stochastic differential equations and tail σ-fields2020

    • Author(s)
      Osada Hirofumi、Tanemura Hideki
    • Journal Title

      Probability Theory and Related Field

      Volume: 177-3-4 Issue: 3-4 Pages: 1137-1242

    • DOI

      10.1007/s00440-020-00981-y

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Uniqueness of Dirichlet Forms Related to Infinite Systems of Interacting Brownian Motions2020

    • Author(s)
      Kawamoto Yosuke、Osada Hirofumi、Tanemura Hideki
    • Journal Title

      Potential Analysis

      Volume: - Issue: 4 Pages: 639-676

    • DOI

      10.1007/s11118-020-09872-2

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Dynamical universality for random matrices and uniqueness of solution of ISDE2021

    • Author(s)
      長田博文
    • Organizer
      Workshop on “Random matrices, Determinantal point processes and Gaussian analytic functions”
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 長田博文ホームページ

    • URL

      https://www2.math.kyushu-u.ac.jp/~osada-labo/osadapersonal_hp/index.html

    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-08-03   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi