Project/Area Number |
20K21232
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 36:Inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
Oka Daichi 東北大学, 理学研究科, 助教 (20756514)
|
Project Period (FY) |
2020-07-30 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
|
Keywords | オキシハライド / エピタキシー / ミスト化学気相成長 / 光エネルギー変換 / 半導体 / 光電変換 / ミストCVD / 複合アニオン / 太陽電池 |
Outline of Research at the Start |
溶液プロセスで簡便に作成できる有機系太陽電池の研究が盛んである。近年、より化学的に安定な無機ハライド半導体を用いる試みが始まったが、変換効率は低い値にとどまっている。ガラス基板上に形成される素子の機能層界面は非常に粗いため、効率低下の原因に関して正確な議論ができていない。本研究では特に高い安定性が期待できる複合アニオン酸化物オキシハライド半導体を対象に、単結晶性の高品質薄膜を用いた正確な物性・界面状態評価に基づき、太陽電池への応用可能性を検証する。無機化合物の高い電気伝導性を活用することができれば、安定性だけでなく効率の飛躍的な向上につながると期待される。
|
Outline of Final Research Achievements |
Synthesis of high-quality epitaxial thin films of bismuth oxyhalides, for which application for photoenergy conversion is expected, was achieved for the first time using mist chemical vapor deposition, a facile solution process. Precise structural analysis by synchrotron radiation revealed that oxygen vacancies induce highly localized lattice strain. In addition, the internal quantum efficiency of bismuth oxyhalide was electrochemically determined for the first time. The result indicated that oxygen vacancies significantly improve the external quantum efficiency in the visible light region. As a technique to search for materials with better conversion efficiency, a synthesis method for compounds with a complex chemical composition including three anions by introducing sulfur was developed.
|
Academic Significance and Societal Importance of the Research Achievements |
オキシハライドをはじめとする複合アニオン化合物は多様なアニオン組成に基づき、バンド構造や物理特性を柔軟に制御できる新材料として近年注目されている。多くのアニオン性元素は蒸気圧が高いため、従来の半導体薄膜合成に用いられる真空蒸着法での薄膜合成が困難だったが、本研究の推進により複合アニオン化合物の高品質薄膜を簡便な溶液プロセスで合成できることが実証された。また、これまでの粉体の研究では未解明だった酸素欠損が構造や光エネルギー変換特性に与える影響が定量的に評価されたことから、太陽電池をはじめとする積層素子に活用できる新材料を化学組成制御に基づいて開発するための指針が得られた。
|