Project/Area Number |
20K21381
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 43:Biology at molecular to cellular levels, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
ITO KOICHI 東京大学, 大学院新領域創成科学研究科, 教授 (10262073)
|
Project Period (FY) |
2020-07-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | マグネシウムイオン / 恒常性維持機 / 細胞内ネットワーク / 大腸菌遺伝学 / 膜輸送体 / 恒常性維持機構 |
Outline of Research at the Start |
細胞内で大半のMg2+をプールしているMg2+貯蔵体は、そもそもセントラルドグマにおける生体高分子合成基質・エネルギーソース(ヌクレオチド3リン酸)や、合成装置そのもの(リボソーム)であるため、合成装置それ自身の産生も厳密にコントロールされていることが予想される。従って、これらの解明のために、【1】Mg2+恒常性維持に関わる分子群の網羅的探索【2】Mg2+濃度と各種分子装置の合成・活性制御における動態解析、それぞれの研究計画を実施し結果を統合することで細胞内Mg2+恒常性維持ネットワーク機構の解明を行なう。
|
Outline of Final Research Achievements |
Magnesium (Mg2+) is a particularly important divalent metal cation involved in a wide range of intracellular processes, from the functional expression of nucleic acids and proteins to the realization of catalytic functions. However, many of the molecular mechanisms underlying the maintenance of its intracellular concentration homeostasis remain unknown. This study identified a large number of suppressor mutants from a high-Mg2+ requirement strain of Escherichia coli and performed whole-genome analysis using NGS, revealing a large number of novel factors involved in Mg2+ homeostasis and their functional networks. This has revealed the overall picture of the molecular mechanism network that contributes to intracellular Mg2+ homeostasis, which was previously unknown.
|
Academic Significance and Societal Importance of the Research Achievements |
マグネシウムイオン(Mg2+)は、生命機能維持に必須となる特別な金属イオンです。生物は細胞内のMg2+を一定に保つ仕組みを備えていますが、その仕組みは未解明でした。本研究は大腸菌を用いた解析により多数の新規因子の同定に成功しました。この研究成果は生命機能に密接な役割をもつMg2+に関する原始生命の起源解明やさらにはMg2+の恒常性に関する疾患に対処する創薬戦略の基盤になることが期待できます。
|