Combining deep learning and virtualization technologies to defend against banking malware
Project/Area Number |
20K21788
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 60:Information science, computer engineering, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Project Period (FY) |
2020-07-30 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2020: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | 仮想化技術 / セキュリティ / 深層学習 / 機械学習 / マルウェア |
Outline of Research at the Start |
本研究では、バンキングマルウェアの特性に着目して、高精度な学習データが生成可能でかつ仮想化ソフトウェアから取得可能な情報のみを用いても検知できるような特殊なデータ変換をおこなう。また、仮想化ソフトウェアで前処理を行ってからクラウドで後処理をおこなうことでデータ転送量を削減し、速やかなマルウェア検出を可能にする。これにより、高効率・高検出率で回避不可能な強力なバンキングマルウェア対策を可能にする。また将来的な深層学習と仮想化技術を融合したマルウェア高精度検出という新しい体系の一般化に向けた道筋をつける。
|
Outline of Final Research Achievements |
In this study, we conducted research on countermeasures against banking malware by integrating deep learning and virtualization technologies. We studied a method that can classify variants with high accuracy by deep learning, taking advantage of the fact that banking malware has many variants. We also studied a technique that can generate and detect malware images from binary-level data that can be obtained by virtualization technology, with the aim of integrating deep learning technique with virtualization technology. We explored various models and parameter combinations for deep learning, including the use of labels for confidentiality measures, and found that the latest models provide high classification accuracy with a low degree of transition learning.
|
Academic Significance and Societal Importance of the Research Achievements |
近年は非常に多数のマルウェアが登場しており、実際に様々なセキュリティ上の被害が継続的に発生し続けているのが現状である。本研究では、最新の深層学習技術と仮想化技術を融合することで、高い精度でマルウェアを検知することができて、かつマルウェアが回避できないシステムの構築に向けた基礎研究を実施した。この技術を発展させることにより、将来的にマルウェアによる被害を大幅に低減できるシステムが実用化されることが見込まれる。
|
Report
(3 results)
Research Products
(2 results)