• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of a tool to predict the invasive potential of oral cancer by machine learning using digital images of histopathological sections

Research Project

Project/Area Number 20K21884
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 90:Biomedical engineering and related fields
Research InstitutionUniversity of Yamanashi

Principal Investigator

Ueki Kochiro  山梨大学, 大学院総合研究部, 教授 (40313663)

Co-Investigator(Kenkyū-buntansha) 安藤 英俊  山梨大学, 大学院総合研究部, 教授 (50221742)
吉澤 邦夫  山梨大学, 大学院総合研究部, 准教授 (60452108)
Project Period (FY) 2020-07-30 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2020: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Keywords口腔扁平上皮癌 / 浸潤様式 / 機械学習 / 上皮間葉移行 / 病理組織切片 / デジタル画像
Outline of Research at the Start

本邦において、口腔癌の組織学的悪性度評価として、腫瘍宿主境界部の浸潤様式の山本・小浜(YK)分類は頻用されており、予後、とくに頸部リンパ節転移の有無に相関がある。そこで、YK分類に基づき浸潤先端部の特徴ベクトルと遺伝子発現量を抽出し、機械学習によって両者のパターン認識を行うことで、先端部の形状特徴を変化させる責任遺伝子を明確にして、口腔癌の浸潤能および予後予測の精度を上昇させる。

Outline of Final Research Achievements

The Yamamoto-Kohama classification (YK classification), which focuses on the invasive front of histopathological specimens, is frequently used in Japan to estimate the invasive potential and prognosis of oral cancer. We developed an invasion prediction tool using machine learning to discriminate the YK classification automatically, and the classification accuracy for determining the YK classification was 87%, which is a good result.
In addition, the distribution state of intercellular bridges between cancer cells was associated with prognosis.

Academic Significance and Societal Importance of the Research Achievements

口腔扁平上皮癌のデジタル病理画像から得られた画像特徴を機械学習化することで、浸潤様式を自動的に判別することが可能であった。さらに画像解析と遺伝子解析を融合し、生命予後に関連する臨床病理学的因子を生物学的だけでなく数理的にも解明し、臨床応用する可能性も見出された。
本研究は、他のがん種にも応用可能であり、がんの診断・治療の均質化を図ることにつながるため、その学術的・社会的意義は大きいと考える。

Report

(3 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • Research Products

    (7 results)

All 2022 2021

All Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results,  Open Access: 5 results) Presentation (2 results)

  • [Journal Article] Automatic discrimination of Yamamoto-Kohama classification by machine learning approach for invasive pattern of oral squamous cell carcinoma using digital microscopic images: a retrospective study2022

    • Author(s)
      Yoshizawa Kunio、Ando Hidetoshi、Kimura Yujiro、Kawashiri Shuichi、Yokomichi Hiroshi、Moroi Akinori、Ueki Koichiro
    • Journal Title

      Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology

      Volume: 133 Issue: 4 Pages: 441-452

    • DOI

      10.1016/j.oooo.2021.10.004

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] High expression of protein tyrosine kinase 7 in oral squamous cell carcinoma: Clinicopathological correlation and prognosis relevance2022

    • Author(s)
      Kimura Yujiro、Yoshizawa Kunio、Hotta‐Osada Asami、Moroi Akinori、Ishii Hiroki、Sakurai Daiju、Saitoh Masao、Oishi Naoki、Kondo Tetsuo、Ueki Koichiro
    • Journal Title

      Clinical and Experimental Dental Research

      Volume: 8 Issue: 2 Pages: 506-512

    • DOI

      10.1002/cre2.553

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Ets family proteins regulate the EMT transcription factors Snail and ZEB in cancer cells2022

    • Author(s)
      Ichikawa Mai Koizumi、Endo Kaori、Itoh Yuka、Osada Asami Hotta、Kimura Yujiro、Ueki Koichiro、Yoshizawa Kunio、Miyazawa Keiji、Saitoh Masao
    • Journal Title

      FEBS Open Bio

      Volume: - Issue: 7 Pages: 1353-1364

    • DOI

      10.1002/2211-5463.13415

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Loss of intercellular bridges in the depth of invasion measurement area is a novel negative prognostic factor for oral squamous cell carcinoma: A retrospective study2022

    • Author(s)
      Yoshizawa Kunio、Kimura Yujiro、Moroi Akinori、Ishii Hiroki、Sakurai Daiju、Saitoh Masao、Oishi Naoki、Kondo Tetsuo、Toyoura Masahiro、Ueki Koichiro
    • Journal Title

      Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology

      Volume: - Issue: 1 Pages: 84-92

    • DOI

      10.1016/j.oooo.2022.02.017

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] EHF suppresses cancer progression by inhibiting ETS1-mediated ZEB expression2021

    • Author(s)
      Kaname Sakamoto, Kaori Endo, Kei Sakamoto, Kou Kayamori, Shogo Ehata, Jiro Ichikawa, Takashi Ando, Ryosuke Nakamura, Yujiro Kimura, Kunio Yoshizawa, Keisuke Masuyama, Tomoyuki Kawataki, Kunio Miyake, Hiroki Ishii, Tomonori Kawasaki, Keiji Miyazawa, and Masao Saitoh
    • Journal Title

      oncogenesis

      Volume: 10 Issue: 3 Pages: 1-15

    • DOI

      10.1038/s41389-021-00313-2

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] 口腔扁平上皮癌病理組織切片のデジタル画像を用いた機械学習におけるがん浸潤様式と分化度の自動判別方法の検討2021

    • Author(s)
      吉澤邦夫
    • Organizer
      第34回日本口腔診断学会総会・学術大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 口腔扁平上皮癌における浸潤深さ(DOI)と細胞間橋の関連について2021

    • Author(s)
      吉澤邦夫
    • Organizer
      第40回日本口腔腫瘍学会総会・学術大会
    • Related Report
      2021 Annual Research Report

URL: 

Published: 2020-08-03   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi