• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Applications of periodic orbits in Hamiltonian dynamics and persistence modules

Research Project

Project/Area Number 20K22302
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionNiigata University

Principal Investigator

Orita Ryuma  新潟大学, 自然科学系, 助教 (30874531)

Project Period (FY) 2020-09-11 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsシンプレクティック多様体 / フレアー理論 / ハミルトン周期軌道 / パーシステント加群 / R群 / 擬重
Outline of Research at the Start

シンプレクティック多様体は,解析力学における相空間の一般化であり,物理学との関連からも重要な研究対象となっている。ニュートンの運動方程式をハミルトン形式で記述すると,シンプレクティック多様体上にハミルトン力学系が与えられる。
本研究では,パーシステント加群の理論を援用することにより,ハミルトン周期軌道の存在問題,特に無限個の非可縮周期軌道の存在を問うGinzburg-Gurel予想へアプローチする。

Outline of Final Research Achievements

In this research I dealt with Ginzburg-Gurel conjecture which states that "every Hamiltonian diffeomorphism of closed symplectic manifolds has infinitely many non-contractible periodic orbits, provided that the diffeomorphism has one orbit". Here a manifold is said to be symplectic if it admits a non-degenerate closed two-form. I investigated the problem by assuming some conditions on the fundamental group of the manifold and the symplectic form. Actually, I proved that the conjecture is true for spherically monotone symplectic manifolds whose fundamental group is assumed to be virtually abelian or an R-group.
During the period, I proved that the equivalence between R-groups and torsion-free group of type N. Accordingly, since torsion-free groups of type N are principal, I could apply the theory of Bredon cohomology for them.

Academic Significance and Societal Importance of the Research Achievements

ハミルトン周期軌道の検知は,解析力学に端を発するシンプレクティック幾何学における基本的な問題であり,また,近年位相的データ解析にて盛んに研究されているパーシステントホモロジーとの関連の研究は学術的,社会的に意義がある。

Report

(3 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • Research Products

    (4 results)

All 2022 2020 Other

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Remarks (1 results)

  • [Journal Article] Rigid fibers of integrable systems on cotangent bundles2022

    • Author(s)
      KAWASAKI Morimichi、ORITA Ryuma
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 74 Issue: 3 Pages: 829-847

    • DOI

      10.2969/jmsj/84278427

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Existence of pseudoheavy fibers of moment maps2020

    • Author(s)
      Kawasaki Morimichi、Orita Ryuma
    • Journal Title

      Communications in Contemporary Mathematics

      Volume: - Issue: 05 Pages: 2050047-2050047

    • DOI

      10.1142/s0219199720500479

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Pseudoheavy subsets in symplectic manifolds2020

    • Author(s)
      Ryuma Orita
    • Organizer
      12th International Symposium on Natural Sciences
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 個人のページ

    • URL

      https://ryuma-orita.netlify.app/ja/

    • Related Report
      2021 Annual Research Report 2020 Research-status Report

URL: 

Published: 2020-09-29   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi