• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Combinatorial aspects of the Teichmuller theory

Research Project

Project/Area Number 20K22304
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionTohoku University (2021-2023)
Kyoto University (2020)

Principal Investigator

Tsukasa Ishibashi  東北大学, 理学研究科, 助教 (30881718)

Project Period (FY) 2020-09-11 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsクラスター代数 / 高階Teichmuller理論 / スケイン代数 / 代数的エントロピー / 測度付きラミネーション / 写像類群 / Teichmuller理論
Outline of Research at the Start

従来のTeichmuller-Thurston理論において基本的な考察対象であった測度付きラミネーションの高階における対応物をクラスター代数の観点から導入し、高階のTeichmuller-Thurston理論を構築する。
応用として申請者らによる符号安定性の理論を写像類群の高階ラミネーションへの作用に適用し、高次Teichmuller空間への作用に関する力学系的特徴量を決定することを目指す。クラスター代数側への応用として、高階のFock-Goncharov双対性の構成を目指す。

Outline of Final Research Achievements

This research project aimed at clarifying the geometry of Teichmuller theory and its higher rank generalizations from the combinatorial viewpoint by means of cluster algebra.
Towards the concrete goal (A): Geometric construction of higher laminations, we almost established the cases of rank 2 Lie algebras sl(3) and sp(4), and obtained several observations towards the general case of semisimple Lie algebras.
Towards the goal (B): Determination of dynamical characteristics of the actions of pseudo-Anosov mapping classes on higher Teichmuller spaces, we investigated the algebraic entropies of the actions of sign-stable mutation loops on the cluster varieties as a theoretical preparation, and completely determined them in the case of acyclic quivers.

Academic Significance and Societal Importance of the Research Achievements

本研究成果の大きな学術的意義は曲面のトポロジー, 表現論, 量子トポロジーといった分野にわたる知見をクラスター代数という組み合わせ論的枠組みの中で結びつけ, 高階Teichmuller空間という数学/物理の両面から興味深い対象の無限遠での挙動について幾何学的な理解を提供したことにある. すなわち, 曲面上のある種の幾何構造の「退化」先の幾何学的記述である. またこの成果は, クラスター多様体の双対性の理解に向けた幾何学的基礎をなす. リーマン面のモジュライ空間の位相的構造を司る写像類群のさらなる構造解明に向けた理論的枠組みを整理したことも本研究の意義といえる.

Report

(4 results)
  • 2023 Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (21 results)

All 2023 2022 2021 Other

All Int'l Joint Research (3 results) Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (13 results) (of which Int'l Joint Research: 7 results,  Invited: 12 results) Book (1 results)

  • [Int'l Joint Research] Michigan State University(米国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] 中国科学技術大学(中国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Michigan State University(米国)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Skein and cluster algebras of unpunctured surfaces for ${\mathfrak{sl}}_3$2022

    • Author(s)
      Ishibashi Tsukasa, Yuasa Wataru
    • Journal Title

      Mathematische Zeitschrift

      Volume: 303 Issue: 3

    • DOI

      10.1007/s00209-023-03208-7

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Cluster realizations of Weyl groups and higher Teichmuller theory2021

    • Author(s)
      Rei Inoue, Tsukasa Ishibashi and Hironori Oya
    • Journal Title

      Selecta Mathematica

      Volume: 27 Issue: 3

    • DOI

      10.1007/s00029-021-00630-9

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Algebraic entropy of sign-stable mutation loops2021

    • Author(s)
      Ishibashi Tsukasa、Kano Shunsuke
    • Journal Title

      Geometriae Dedicata

      Volume: - Issue: 1 Pages: 79-118

    • DOI

      10.1007/s10711-021-00606-1

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Cluster realizations of Weyl groups and higher Teichmuller theory2021

    • Author(s)
      Ishibashi Tsukasa, Inoue Rei, Oya Hironori
    • Journal Title

      Selecta Mathematica, New Series

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] クラスター代数と曲面のトポロジー2023

    • Author(s)
      石橋典
    • Organizer
      日本数学会2023年度年会、企画特別講演
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Wilson lines and the A=U problem for the moduli spaces of G-local systems2022

    • Author(s)
      Tsukasa Ishibashi
    • Organizer
      YMSC Topology Seminar
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Unbounded sl(3)-laminations and their shear coordinates2022

    • Author(s)
      Tsukasa Ishibashi
    • Organizer
      南大阪代数セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Wilson lines and the A=U problem for the moduli spaces of G-local systems2022

    • Author(s)
      石橋典
    • Organizer
      リーマン面に関連する位相幾何学
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Wilson lines and the A=U problem for the moduli spaces of G-local systems2022

    • Author(s)
      Tsukasa Ishibashi
    • Organizer
      Trends in Cluster Algebras 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Sign stability of mapping classes on marked surfaces2021

    • Author(s)
      Tsukasa Ishibashi
    • Organizer
      Geometry of Discrete Groups and Hyperbolic Spaces
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Wilson lines and their Laurent positivity2021

    • Author(s)
      Tsukasa Ishibashi
    • Organizer
      Lie Theory and its Applications in Physics XIV
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Wilson lines and their Laurent positivity2021

    • Author(s)
      Tsukasa Ishibashi
    • Organizer
      ALTReT 2021
    • Related Report
      2021 Research-status Report
  • [Presentation] Wilson lines and their Laurent positivity2021

    • Author(s)
      Tsukasa Ishibashi
    • Organizer
      Topological Studies around Riemann Surfaces
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Wilson lines and their Laurent positivity2021

    • Author(s)
      Tsukasa Ishibashi
    • Organizer
      Infinite Analysis 21
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Wilson lines and their Laurent positivity2021

    • Author(s)
      Ishibashi Tsukasa
    • Organizer
      Quantum Geometry and Representation Theory
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Skein and cluster algebras of marked surfaces without punctures for sl(3)2021

    • Author(s)
      Ishibashi Tsukasa
    • Organizer
      Kyoto Differential Topology Seminar
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Wilson lines and their Laurent positivity2021

    • Author(s)
      Ishibashi Tsukasa
    • Organizer
      Lie Theory and its Applications in Physics XIV
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] Lie Theory and Its Applications in Physics2023

    • Author(s)
      Vladimir Dobrev (Editor)
    • Total Pages
      542
    • Publisher
      Springer Singapore
    • ISBN
      9789811947513
    • Related Report
      2022 Research-status Report

URL: 

Published: 2020-09-29   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi