• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Lefschetz-Bott fibrations and convex symplectic manifolds

Research Project

Project/Area Number 20K22306
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionOsaka University (2021-2023)
Kyoto University (2020)

Principal Investigator

Oba Takahiro  大阪大学, 大学院理学研究科, 准教授 (50814464)

Project Period (FY) 2020-09-11 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
KeywordsLefschetz-Bottファイバー空間 / シンプレクティック多様体 / 接触多様体 / 複素多様体 / シンプレクティック幾何学
Outline of Research at the Start

凸シンプレクティック多様体の中では,Stein領域に対する研究手法が豊富で,その様々な幾何学的性質が明らかにされてきた.しかし,凸シンプレクティック多様体全体ではStein領域が占める割合は小さく,それ以外を扱うための有効な研究手法は知られていない.本研究では,Lefschetz-Bottファイバー空間というファイバー構造を用いた凸シンプレクティック多様体の研究を開拓する.より具体的には,このファイバー構造を許容する凸シンプレクティック多様体の解明,およびそのような多様体のシンプレクティック構造の研究を目的とする.

Outline of Final Research Achievements

We studied spaces called convex symplectic manifolds using Lefschetz-Bott fibrations. The main results are as follows: by using Lefschetz-Bott fibrations, we obtained a relation between two products of Dehn twists in the symplectic mapping class group of a 4-dimensional symplectic manifold. In addition, as a result of research derived from the study of Lefschetz-Bott fibrations, we characterized spheres of dimension 5 and higher with a geometric structure called the standard contact structure, based on their properties of dynamics and symplectic fillings.

Academic Significance and Societal Importance of the Research Achievements

Dehnツイストの積の間の関係式は曲面の写像類群の場合はよく研究されており,4次元シンプレクティック多様体の構成的な研究に用いられてきた.4次元以上のシンプレクティック多様体の写像類群においては,このような関係式はほとんど知られていない.本研究では,4次元の場合に具体的な関係式を得たことで,高次元シンプレクティック多様体の構成的な研究の糸口を与えたといえる.また,力学系とシンプレクティック充填の観点からの接触多様体の特徴付けは,接触多様体の区別・分類に新たな視点を示唆するものである.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (28 results)

All 2024 2023 2022 2021 2020 Other

All Int'l Joint Research (3 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (23 results) (of which Int'l Joint Research: 3 results,  Invited: 18 results)

  • [Int'l Joint Research] Jeonbuk National University(韓国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Sunchon University(韓国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Sunchon National University(韓国)

    • Related Report
      2021 Research-status Report
  • [Journal Article] On dynamically convex contact manifolds and filtered symplectic homology2024

    • Author(s)
      Myeonggi Kwon, Takahiro Oba
    • Journal Title

      Journal of the London Mathematical Society

      Volume: 109 Issue: 5 Pages: 1-26

    • DOI

      10.1112/jlms.12914

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Lefschetz-Bott Fibrations on Line Bundles Over Symplectic Manifolds2020

    • Author(s)
      Oba Takahiro
    • Journal Title

      International Mathematics Research Notices

      Volume: 00 Issue: 2 Pages: 1-40

    • DOI

      10.1093/imrn/rnaa144

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] 球面の単位余接バンドルのシンプレクティック充填について2024

    • Author(s)
      大場貴裕
    • Organizer
      日本数学会2024年度年会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 球面の単位余接束のシンプレクティック充填について2024

    • Author(s)
      大場貴裕
    • Organizer
      Algebraic Geometry, Topology, Combinatorics and Related Topics 2024
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] シンプレクティック充填のトポロジー2023

    • Author(s)
      大場貴裕
    • Organizer
      横国大幾何トポロジーセミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 6次元シンプレクティック多様体とその部分多様体のトポロジー2023

    • Author(s)
      大場貴裕
    • Organizer
      第70回トポロジーシンポジウム
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 6次元シンプレクティック多様体内のホモロガスな4次元部分多様体について2023

    • Author(s)
      大場貴裕
    • Organizer
      リーマン面に関連する位相幾何学
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Symplectic fillings of unit cotangent bundles of spheres2023

    • Author(s)
      Takahiro Oba
    • Organizer
      The 4th Taiwan-Japan Joint Conference on Differential Geometry
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 球面の単位余接束のシンプレクティック充填について2023

    • Author(s)
      大場貴裕
    • Organizer
      幾何学コロキウム(北海道大学)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Symplectic submanifolds in dimension 6 from Lefschetz fibrations2023

    • Author(s)
      Takahiro Oba
    • Organizer
      QSMS workshop on symplectic geometry and related topics
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] ファイバー構造とシンプレクティック多様体のトポロジー2023

    • Author(s)
      大場貴裕
    • Organizer
      第6回数理新人セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Symplectic submanifolds in dimension 6 from Lefschetz fibrations2023

    • Author(s)
      大場貴裕
    • Organizer
      2023年度日本数学会年会
    • Related Report
      2022 Research-status Report
  • [Presentation] 余次元2のシンプレクティック部分多様体のトポロジー2022

    • Author(s)
      大場貴裕
    • Organizer
      大阪大学数学教室談話会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 4次元Dehnツイストの間の関係式2022

    • Author(s)
      大場貴裕
    • Organizer
      リーマン面に関連する位相幾何学
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 4次元Dehnツイストの間の関係式2022

    • Author(s)
      大場貴裕
    • Organizer
      接触構造・特異点・微分方程式およびその周辺
    • Related Report
      2021 Research-status Report
  • [Presentation] 4次元Dehnツイストの間の関係式2022

    • Author(s)
      大場貴裕
    • Organizer
      日本数学会2022年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] 4次元Dehnツイストの間の関係式と擬正則曲線の手法2021

    • Author(s)
      大場 貴裕
    • Organizer
      阪大トポロジーセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] A four dimensional mapping class group relation2021

    • Author(s)
      Takahiro Oba
    • Organizer
      Free math seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ファイバー構造とシンプレクティック充填のトポロジー2021

    • Author(s)
      大場 貴裕
    • Organizer
      N-KOOKセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] A four-dimensional mapping class relation2021

    • Author(s)
      Takahiro Oba
    • Organizer
      Singularities, arrangements, and low-dimensional topology
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Rational ruled surfaces as symplectic divisors2021

    • Author(s)
      大場貴裕
    • Organizer
      接触構造・特異点・微分方程式およびその周辺
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Rational ruled surfaces as symplectic divisors2021

    • Author(s)
      大場貴裕
    • Organizer
      対称性と幾何セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Rational ruled surfaces as symplectic divisors2020

    • Author(s)
      大場貴裕
    • Organizer
      微分トポロジーセミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Fibration-like structures and fillings of contact manifolds2020

    • Author(s)
      Takahiro Oba
    • Organizer
      Incheon National University Symposium
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Rational ruled surfaces as symplectic divisors2020

    • Author(s)
      大場貴裕
    • Organizer
      4次元トポロジー
    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-09-29   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi