• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on the geometric structures of handlebody-knots and their complements

Research Project

Project/Area Number 20K22312
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionKochi University (2022-2023)
Waseda University (2020-2021)

Principal Investigator

Murao Tomo  高知大学, 教育研究部自然科学系理工学部門, 助教 (10880304)

Project Period (FY) 2020-09-11 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords結び目 / ハンドル体結び目 / 空間曲面 / カンドル / ラック / ねじれAlexander不変量 / カンドル(ラック)コサイクル不変量 / 多重群ラック / (多重群)ラックコサイクル不変量 / 可逆性 / カイラリティ / 多重共役カンドル / 拡大 / MCQ Alexander pair / Alexander pair / Alexander不変量
Outline of Research at the Start

多重共役カンドルとは,部分的な群演算を備えたカンドルであり,ハンドル体結び目の彩色不変量を構成するために導入された代数である.本研究では,多重共役カンドルの自由微分を導入し,ハンドル体結び目のAlexander不変量の拡大及び精密化を行う.また,ハンドル体結び目の補空間における幾何構造の観点から,拡大Alexander不変量への更なる補正を与え,より強力な不変量の構成や個々のハンドル体結び目が持つ幾何学的性質の解明を目指す.

Outline of Final Research Achievements

We provided a method to construct a pair of maps, called an MCQ Alexander pair, which is used in the construction of f-twisted Alexander invariants of handlebody-knots. Additionally, we organized the algebraic structure of a linear extension of a multiple conjugate quandle and showed a sufficiency of MCQ Alexander pairs in constructing handlebody-knot invariants derived from the linear extensions.
Furthermore, we constructed the (co)homology theory of multiple group racks and the multiple group rack cocycle invariants for oriented spatial surfaces. Using this invariant, we gave examples of classifications of oriented spatial surfaces that cannot be distinguished by classical methods.

Academic Significance and Societal Importance of the Research Achievements

本研究は,曲面やハンドル体の3次元球面への埋め込まれ方を解明するために,高精度で扱いやすい不変量の構成を目指したものであり,本研究によって得られた成果は結び目理論,低次元多様体論への寄与が期待されるものである.また,具体的な研究結果である,ハンドル体結び目の拡大Alexander不変量に係る多重共役カンドルの代数構造における基礎理論の構築,多重群ラック(コ)ホモロジー理論を用いた空間曲面の分類研究は,今後の研究の基盤となるとともに,研究の方向性を指し示す結果と言える.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (22 results)

All 2023 2022 2021 2020 Other

All Journal Article (5 results) (of which Peer Reviewed: 5 results) Presentation (16 results) (of which Int'l Joint Research: 6 results,  Invited: 10 results) Remarks (1 results)

  • [Journal Article] On sufficiency of the definition of MCQ Alexander pairs in terms of invariants for handlebody-knots2022

    • Author(s)
      Murao Tomo
    • Journal Title

      Beitrage zur Algebra und Geometrie / Contributions to Algebra and Geometry

      Volume: - Issue: 3 Pages: 689-719

    • DOI

      10.1007/s13366-022-00652-0

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Linear extensions of multiple conjugation quandles and MCQ Alexander pairs2021

    • Author(s)
      Tomo Murao
    • Journal Title

      Journal of Algebra and Its Applications

      Volume: Online Ready Issue: 03 Pages: 2150045-2150045

    • DOI

      10.1142/s0219498821500456

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] The tunnel number and the cutting number with constituent handlebody-knots2021

    • Author(s)
      Tomo Murao
    • Journal Title

      Topology and its Applications

      Volume: 292 Pages: 107632-107632

    • DOI

      10.1016/j.topol.2021.107632

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A multiple group rack and oriented spatial surfaces2020

    • Author(s)
      Atsushi Ishii, Shosaku Matsuzaki and Tomo Murao
    • Journal Title

      J. Knot Theory Ramifications

      Volume: 29 Issue: 07 Pages: 2050046-2050046

    • DOI

      10.1142/s0218216520500467

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Affine extensions of multiple conjugation quandles and augmented MCQ Alexander pairs2020

    • Author(s)
      Tomo Murao
    • Journal Title

      Topology and its Applications

      Volume: - Pages: 107531-107531

    • DOI

      10.1016/j.topol.2020.107531

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] ハンドル体結び目と彩色理論について2023

    • Author(s)
      村尾 智
    • Organizer
      第42回 高知大学理工学部門研究談話会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] ハンドル体結び目と多重共役カンドル彩色について2022

    • Author(s)
      村尾智
    • Organizer
      早稲田大学数学教育学会講演会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Multiple group rack cocycle invariants of spatial surfaces2022

    • Author(s)
      Tomo Murao
    • Organizer
      The 18th East Asian Conference on Geometric Topology
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Multiple conjugation quandle colorings for handlebody-knots2022

    • Author(s)
      村尾智
    • Organizer
      第113回 高知大学数理科学セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 空間曲面と多重群ラックコサイクル不変量2022

    • Author(s)
      村尾智
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] On constituent links of handlebody-knots and associated multiple conjugation quandle colorings2022

    • Author(s)
      Tomo Murao
    • Organizer
      The 17th East Asian Conference on Geometric Topology
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] ハンドル体結び目のf-ねじれAlexander不変量とk-同値類2021

    • Author(s)
      村尾智
    • Organizer
      N-KOOKセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On invariants for handlebody-knots and spatial surfaces2021

    • Author(s)
      村尾智
    • Organizer
      Intelligence of Low-dimensional Topology 2021
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On constituent links of genus 2 handlebody-knots2021

    • Author(s)
      Tomo Murao
    • Organizer
      Friday Seminar on Knot Theory
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On constituent links of genus 2 handlebody-knots and associated multiple conjugation quandle colorings2021

    • Author(s)
      Tomo Murao
    • Organizer
      AMS Fall Southeastern Virtual Sectional Meeting
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] MCQ twisted Alexander invariants for handlebody-knots2021

    • Author(s)
      Tomo Murao
    • Organizer
      The 16th East Asian Conference on Geometric Topology
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Twisted derivatives for multiple conjugation quandles2021

    • Author(s)
      村尾智
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] 多重共役カンドルのねじれ微分2020

    • Author(s)
      村尾智
    • Organizer
      拡大KOOKセミナー2020
    • Related Report
      2020 Research-status Report
  • [Presentation] Multiple group rack colorings for oriented spatial surfaces2020

    • Author(s)
      Tomo Murao
    • Organizer
      Friday Seminar on Knot Theory
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ハンドル体結び目のディスクシステムとカンドルの連結成分2020

    • Author(s)
      村尾智
    • Organizer
      東北結び目セミナー2020
    • Related Report
      2020 Research-status Report
  • [Presentation] ハンドル体結び目のMCQねじれAlexander不変量2020

    • Author(s)
      村尾智
    • Organizer
      結び目の数理III
    • Related Report
      2020 Research-status Report
  • [Remarks]

    • URL

      http://www.aoni.waseda.jp/tmurao/

    • Related Report
      2020 Research-status Report

URL: 

Published: 2020-09-29   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi