Research and Flight Verification of a Small and Low-Cost Solar Plane Based on Active Aeroelastic Control
Project/Area Number |
20K22386
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0301:Mechanics of materials, production engineering, design engineering, fluid engineering, thermal engineering, mechanical dynamics, robotics, aerospace engineering, marine and maritime engineering, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Morita Naoto 東京大学, 大学院工学系研究科(工学部), 助教 (10884661)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 空力弾性 / 計測制御 / 無人航空機 / フライトシミュレーション / HILS / 数値計算 / 能動空力弾性制御 / 飛行試験 / 姿勢推定 / 空力弾性解析 / 高高度擬衛星 / ソーラープレーン / 偏微分方程式 / 能動的空力弾性制御 / 飛行実証 / 制御工学 / 数値解析 |
Outline of Research at the Start |
本研究では人工衛星の機能の欠点を補完し、リモートセンシングの更なる低価格化を実現するため、小型低価格な高高度滞空型のソーラープレーンの実現にむけたソフトウェア・ハードウェア研究を行う。ソーラープレーンが夜の時間帯を通して飛行を継続するためには、既存設計技術に対しより一層の軽量化が必要である。その解決策として突風荷重を低減する能動的な構造制御を前提とした機体を提案する。その実現に向け、柔軟航空機の構造制御解析ができる革新的なシミュレータの開発を行い、突風応答を改善する制御、さらにはより効率的な飛行を実現する制御の研究を行う。開発を行う中で、実証機の飛行試験を行い、精度検証を行う。
|
Outline of Final Research Achievements |
A high-altitude pseudo-satellite (HAPS), an unmanned aerial vehicle that can fly day and night, is expected to complement and replace part of the functions of satellites. However, its wingspan has to be large at the current level of technology, and further downsizing and cost reduction are desired. To reduce the size of HAPS, it is necessary to establish unmanned aerial vehicles with lightweight and extra-long wings to minimise battery consumption during flight, but this requires technological innovations. This research focuses on 'active aeroelastic control', which predicts and measures the structural displacement of the wing during flight and actively controls it. For this purpose, numerical simulations have been developed, and a technology demonstration aircraft with a wingspan of 4 m has been built and flown.
|
Academic Significance and Societal Importance of the Research Achievements |
能動空力弾性制御の技術実証機を実際に製作し、飛行させた報告は日本国内には存在せず、日本初の成果である。また複数カナードを持つ無人航空機の飛行例は世界的に見ても類がなく、この点では世界初の成果でもある。柔軟航空機の数値モデルを作成しただけでなく、実飛行環境でデータを取得できるようになったのは本研究の大きな成果であり、今後多くの学術的研究のテストベッドとなり、能動空力弾性制御の実社会実装に向けた大きな礎石となることができた意義は非常に大きい。
|
Report
(3 results)
Research Products
(4 results)