Project/Area Number |
20K22529
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0501:Physical chemistry, functional solid state chemistry, organic chemistry, polymers, organic materials, biomolecular chemistry, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
Yasui Kosuke 京都大学, 高等研究院, 特定助教 (10877640)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 高配位ケイ素化合物 / カルベン / クロスカップリング |
Outline of Research at the Start |
遷移金属触媒による有機ハロゲン化物と有機金属試薬とのクロスカップリングは,現在の有機合成化学に必要不可欠な方法論の一つである。一方,持続可能な社会への貢献を鑑みた場合,希少な遷移金属が必須である点が依然問題であり,天然に豊富に存在する典型元素で触媒を代替することが望ましい。 本研究では,クロスカップリングを可能にする典型元素触媒を開発することを究極の目標に設定し,酸化還元機構に代わる新たな反応機構の提案と,それを実現する典型元素 触媒の合理設計に取り組む。
|
Outline of Final Research Achievements |
In this study, we set the ultimate goal of developing typical element catalysts that enable cross-coupling, and worked on the proposal of a new reaction mechanism that replaces the redox mechanism and the rational design of typical element catalysts that realize it. Although we have synthesized various silicon compounds and investigated their reactivity, we have not yet found any alternative to transition metal catalysts. On the other hand, we found the dimerization of a carbene ligand, which was investigated as one of the ligands. This has enabled us to construct tetrasubstituted olefins, which are usually difficult to synthesize. This has enabled the creation of a new π-conjugated system that exhibits high electron accepting capacity and fluorescence emission.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で合成されたジアザペンタフルバレンはこれまでにも合成例はあるものの,その構造と電子受容性の調査はなされておらず,構造を多様化することが潜在的に困難であった.一方,本研究で確立した合成経路では原料に入手容易な安息香酸を用いることができるため,その構造的多様化により高い電子受容性を実現できると見込まれる.実際,高い電子受容性をもつフルバレンのアルケン部位をイミンで置換した構造をもつため,平面性の高い構造と優れた電子受容性を兼ね備えた基本骨格であるとわかった.このような電子受容性 π 共役系を高密度で集積できれば,既存の有機材料を凌駕する電子輸送性を実現できると期待される.
|