Project/Area Number |
20K22531
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0501:Physical chemistry, functional solid state chemistry, organic chemistry, polymers, organic materials, biomolecular chemistry, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2020-09-11 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | ペロブスカイト太陽電池 / マルチポッド型 / 電荷回収層 / 変換効率 / 単分子膜 / 電荷回収 / マルチポッド / スズ / ペロブスカイト / 太陽電池 / 自己組織 / 液晶 / 自己組織化性単分子膜 / 電荷回収材料 |
Outline of Research at the Start |
スズ系ペロブスカイト太陽電池の低い光電変換特性の要因として,適した電荷回収層材料が限られていることと,分子レベルでのペロブスカイト層との界面構造制御法が無いことに着目し,1)ペロブスカイト層に対して face-on の分子配向を示す円盤状の液晶性 p 型有機半導体材料の開発,及び2)4 方向にイオン性置換基をもつテトラポッド型分子を用いた単分子パッシベーション膜の開発に取り組む.これらにより,スズ系ペロブスカイト太陽電池の光電変換効率の飛躍的向上(>20%)の実現を目指す.
|
Outline of Final Research Achievements |
Hole-collecting monolayers have drawn attention in perovskite solar cell research due to their ease of processing, high performance, and good durability. Since molecules in the hole-collecting monolayer are typically composed of functionalized π-conjugated structures, hole extraction is expected to be more efficient when the π-cores are oriented face-on with respect to the adjacent surfaces. However, strategies for reliably controlling the molecular orientation in monolayers remain elusive. In this work, multiple anchoring groups were used to control the face-on orientation of a monolayer chemisorbed on a transparent conducting oxide electrode surface. The face-on orientation was found to facilitate hole extraction, leading to perovskite solar cells with enhanced stability and high power conversion efficiencies up to 23.0%.
|
Academic Significance and Societal Importance of the Research Achievements |
ペロブスカイト太陽電池の分野において,これまでにほとんどの正孔回収材料がバルクの厚膜層として用いられてきた。しかし、電荷回収材料自体の厚膜による光吸収が取り出せる電流密度を低下させてしまい,また,この厚膜のモルフォルジーの安定性がデバイス自体の低い熱安定性の原因となっている.これに対して,本研究ではマルチポッド型構造をもつ単分子膜材料の配向配列の制御による各層の界面の精密制御を実証し,太陽電池の高効率化・高耐久性化を達成した.マルチポッド型の有用性を実証することにより,本太陽電池の開発分野に多大なインパクトをもたらすとともに,その実用化を大きく加速できるものと期待できる.
|