• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis of mu-conformal mappings and its application to complex dynamics

Research Project

Project/Area Number 20KK0310
Research Category

Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionHitotsubashi University (2022-2023)
Tokyo Institute of Technology (2020)

Principal Investigator

KAWAHIRA Tomoki  一橋大学, 大学院経済学研究科, 教授 (50377975)

Project Period (FY) 2022 – 2023
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Keywords複素力学系 / 放物的分岐 / 擬等角写像 / Beltrami方程式 / μ-等角写像 / 数値解析 / ベルトラミ方程式 / 精度保証計算
Outline of Research at the Start

基課題は「1次元複素解析的写像による力学系では,カオス部分を位相的に保ったまま周期点の退化を解消できるであろう」という「Goldberg-Milnor予想」に対し,指定された複素構造の変形が実現できる「μ-等角写像」を用いた新しい解析的なアプローチを提案するものである.さらに本国際共同研究では,「μ-等角写像」の様々な応用と実装,とくに複素力学系理論への応用を視野にいれ,「μ-等角写像」が満たす偏微分方程式である「退化Beltrami方程式」の一般的解法および数値解法を研究する.

Outline of Final Research Achievements

This research project aims to further develop the research subject, "Research on μ-quasiconformal perturbations toward solving the Goldberg-Milnor conjecture" (Kiban C, 19K03535), through numerical analysis. Specifically, it addresses the Goldberg-Milnor conjecture, which questions whether the chaotic parts of a dynamical system can be essentially preserved when "gently" perturbing a complex dynamical system that has parabolic periodic points, a state where multiple periodic points have degenerated. To tackle this, the project applies a class of homeomorphisms that includes quasiconformal mappings known as "μ-conformal mappings." In particular, the research aims to implement numerical computation methods with error estimates for "μ-conformal mappings" that exhibit significant degeneration and distortion.

Academic Significance and Societal Importance of the Research Achievements

一般に時間発展するシステムを「力学系」とよぶが,力学系を決定するパラメーターは多くの場合振動や摂動にさらされており,ある範囲で絶え間なく揺らぎ続けていると考えるのが自然である.一方で,そのような力学系の振る舞いが将来にわたって予測可能であるためには,力学系全体がパラメーターの変化に対して「安定」している必要がある.本研究では,パラメーターの変化に対して「不安定」なシステムにむしろ着目し,パラメーターの変化の方向を限定することで,システムの変化を最小限に抑えるための研究を数値解析の観点から行った.

Report

(2 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • Research Products

    (7 results)

All 2024 2023 Other

All Int'l Joint Research (1 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (4 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results) Remarks (1 results)

  • [Int'l Joint Research] ウプサラ大学(スウェーデン)2023

    • Year and Date
      2023-06-04
    • Related Report
      2023 Annual Research Report
  • [Journal Article] From hyperbolic to parabolic parameters along internal rays2024

    • Author(s)
      Yi-Chiuan Chen and Tomoki Kawahira
    • Journal Title

      Trans. Amer. Math. Soc.

      Volume: 377

    • DOI

      10.1090/tran/9080

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Similarity between the Mandelbrot set and the Julia sets, and more2023

    • Author(s)
      Tomoki Kawahira
    • Organizer
      Around the Mandelbrot set: A conference celebrating the 60th birthday of Mitsuhiro Shishikura
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Derivatives of mildly degenerating holomorphic motions of the quadratic Julia sets2023

    • Author(s)
      Tomoki Kawahira
    • Organizer
      Workshop on Holomorphic Dynamics --- MLC and tools for studying it
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Visualization of quasiconformal deformations of holomorphic dynamics2023

    • Author(s)
      Tomoki Kawahira
    • Organizer
      Holomorphic Day
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Zalcman functions for holomorphic diffeomorphisms of C22023

    • Author(s)
      Tomoki Kawahira
    • Organizer
      Atelier franco-japonais de dynamiques reelles et complexes
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Remarks] 個人ホームページ

    • URL

      https://www1.econ.hit-u.ac.jp/kawahira/

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2021-03-19   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi