Development of mathematical analysis via phase field method
Project/Area Number |
21340033
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Global analysis
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
NISHIURA Yasumasa 東北大学, 原子分子材料科学高等研究機構, 教授 (00131277)
|
Co-Investigator(Renkei-kenkyūsha) |
OKABE Shinya 東北大学, 大学院・理学研究科, 准教授 (70435973)
MAEKAWA Yasunori 東北大学, 大学院・理学研究科, 准教授 (70507954)
|
Project Period (FY) |
2009 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥15,080,000 (Direct Cost: ¥11,600,000、Indirect Cost: ¥3,480,000)
Fiscal Year 2012: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2011: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2010: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2009: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
|
Keywords | Allen-Cahn方程式 / Cahn-Hilliard方程式 / フェイズフィールド法 / 変分法 / 平均曲率流 / 幾何学的測度論 / 極小曲面 / 相分離 / 平均曲率 |
Research Abstract |
A family of smooth surfaces parameterized by time is called mean curvature flow if the velocity of motion at each point and time is equal to its mean curvature vector. We have made fundamental advance of knowledge on the general existence and regularity theory of mean curvature flow which may have singularities, and moreover, on those of geometric time evolution problems in large.
|
Report
(5 results)
Research Products
(59 results)