Project/Area Number |
21540030
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Waseda University (2011-2012) Kinki University (2009-2010) |
Principal Investigator |
OZAKI Manabu 早稲田大学, 理工学術院, 教授 (80287961)
|
Research Collaborator |
MIZUSAWA Yasushi 名古屋工業大学, 准教授 (60453817)
ITOH Tsuyoshi 千葉工業大学, 講師
TOHKAILIN Mitsul 大阪工業大学, 非常勤講師
FUJII Satoshi 金沢工業大学, 講師 (20386618)
OKANO Keiji 都留文科大学, 講師
MAIRE Christian Universite de Franche-Comte, 教授
ABBAS Chazad Movahhedi Universite de Limoges, 教授
BRUNO Angles Universite de Caen, 教授
|
Project Period (FY) |
2009 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2012: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2011: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2010: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 数論 / 代数体 / 岩澤理論 / ガロワ群 / 非アーベル拡大 / デデキントゼータ函数 / 制限分岐拡大 / 単数群 / ガロワコホモロジー / イデアル類群 / 最大不分岐拡大 / 馴分岐拡大 / 岩澤不変量 / 岩澤加群 |
Research Abstract |
In this research project, I have obtained results on (1) a formula describing Z_p-rank of tamely ramified Iwasawa modules of the basic Z_p-extension, (2) an analogy of Weil paring for ideal class groups of number fields, (3) the isomorphism classes of Galois cohomology groups of global unit groups, and (4) a characterization of the Dedekind zeta functions in terms of a family of the Galois groups of restricted ramified extensions.
|