• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Best evaluation of Sobolev inequality based on the perspective of special function theory

Research Project

Project/Area Number 21540148
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionNihon University

Principal Investigator

TAKEMURA Kazuo  日本大学, 生産工学部, 助教 (60367216)

Co-Investigator(Kenkyū-buntansha) KAMETAKA Yoshinori  大阪大学, 基礎工学研究科, 名誉教授 (00047218)
Co-Investigator(Renkei-kenkyūsha) NAGAI Atsushi  日本大学, 生産工学部, 准教授 (90304039)
Project Period (FY) 2009 – 2012
Project Status Completed (Fiscal Year 2012)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2012: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2011: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2010: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsソボレフ不等式 / グリーン関数 / 再生核 / 最良定数 / 微分方程式
Research Abstract

In the self-adjoint boundary value problem of 2M-th order (-1)^M (d/dx)^2M differential operator, best evaluation (best constant, best function) of a Sobolev inequality corresponding to clamped-free boundary condition were obtained. We also obtained the best evaluation of a Sobolev type inequality corresponding to the n-th order Hurwitz differential operators. In the Sobolev inequality of the discrete version that has proceeded in parallel with the best evaluation of the Sobolev inequality of the continuous version, we were able to compute the best constant of discrete Sobolev inequality on regular M-hedron for M=4, 6, 8, 12, 20. In addition to this result, we obtained the best evaluation of the discrete Sobolev inequality corresponding to a bending problem of a string. These are important results to become the clue in studying the future discrete Sobolev inequality.

Report

(5 results)
  • 2012 Annual Research Report   Final Research Report ( PDF )
  • 2011 Annual Research Report
  • 2010 Annual Research Report
  • 2009 Annual Research Report
  • Research Products

    (32 results)

All 2013 2012 2011 2010 2009 Other

All Journal Article (14 results) (of which Peer Reviewed: 14 results) Presentation (18 results)

  • [Journal Article] Sobolev type inequalities of time-periodic boundary value problems for Heavisideand Thomson Cables2012

    • Author(s)
      Kazuo Takemura, Yoshinori Kametaka, Kohtaro Watanabe, Atsushi Nagai and Hiroyuki Yamagishi
    • Journal Title

      Boundary ValueProblems

      Volume: 2012/ 95 Issue: 1 Pages: 1-15

    • DOI

      10.1186/1687-2770-2012-95

    • Related Report
      2012 Annual Research Report 2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] The Best Constant of Discrete Sobolev InequalityCorresponding to a Bending Problem of a String2012

    • Author(s)
      Hiroyuki Yamagishi, Atsushi Nagai, Kohtaro Watanabe, Kazuo Takemura and Yoshinori Kametaka
    • Journal Title

      Kumamoto Journal of Mathematics

      Volume: 25巻 Pages: 1-15

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Elliptic theta function and the best constants of Sobolev-type inequalities2012

    • Author(s)
      Hiroyuki Yamagishi, Yoshinori Kametaka, Atsushi Nagai, Kohtaro Watanabe and Kazuo Takemura
    • Journal Title

      JSIAM Letters

      Volume: 4巻 Pages: 1-4

    • NAID

      130002129398

    • Related Report
      2012 Annual Research Report 2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] The Best Constant of Discrete Sobolev Inequality Corresponding to a Bending Problem of a String2012

    • Author(s)
      Hiroyuki Yamagishi, Atsushi Nagai, Kohtaro Watanabe, Kazuo Takemura and Yoshinori Kametaka
    • Journal Title

      Kumamoto Journal of Mathematics

      Volume: 25 Pages: 1-15

    • NAID

      110009930106

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 正多面体上の離散ソボレフ不等式の最良定数2011

    • Author(s)
      亀高惟倫,渡辺宏太郎,山岸弘幸,永井敦,武村一雄
    • Journal Title

      日本応用数理学会論文誌

      Volume: 21巻 Pages: 289-308

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] 正多面体上の離散ソボレフ不等式の最良定数2011

    • Author(s)
      亀高惟倫, 渡辺宏太郎, 山岸弘幸, 永井敦, 武村一雄
    • Journal Title

      日本応用数理学会論文誌

      Volume: 21 Pages: 289-308

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Giambelli'sformula and the best constant of Sobolev inequality in one dimensional Euclidean space2010

    • Author(s)
      Yoshinori Kametaka, Atsushi Nagai, Kohtaro Watanabe, Kazuo Takemura and Hiroyuki Yamagishi
    • Journal Title

      Scientiae Mathematicae Japonicae

      Volume: 71,No.1 Pages: 27-41

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Giambelli's formula and the best constant of Sobolev inequality in one dimensional Euclidean space2010

    • Author(s)
      Y.Kametaka, A.Nagai, K.Watanabe, K.Takemura, H.Yamagishi
    • Journal Title

      Scientiae Mathematicae Japonicae

      Volume: 71, No.1 Pages: 27-41

    • NAID

      10027156121

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The best constant of Sobolev inequality corresponding to clamped-free boundary value problem for (-1)^M(d/dx)^2M2009

    • Author(s)
      Kazuo Takemura
    • Journal Title

      Proceedings of the Japan Academy

      Volume: 85, Ser.A, No.8 Pages: 112-117

    • NAID

      40016807007

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] The best constant of Sobolev inequality corresponding to a bending problem of a beam on aninterval2009

    • Author(s)
      Kazuo Takemura, Hiroyuki Yamagishi, Yoshinori Kametaka, Kohtaro Watanabe and Atsushi Nagai
    • Journal Title

      Tsukuba Journal of Mathematics

      Volume: 33,No.2 Pages: 253-280

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] 弾性基盤上の張力をかけた棒のたわみの2点境界値問題と対応するソボレフ不等式の最良定数2009

    • Author(s)
      山岸弘幸,亀高惟倫,武村一雄,渡辺宏太郎,永井敦
    • Journal Title

      日本応用数理学会論文誌

      Volume: 19,No.4 Pages: 489-518

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] The best constant of Sobolev inequality corresponding to clamped-free boundary value problem for(-1)^M(d/dx)^<2M>2009

    • Author(s)
      K.Takemura
    • Journal Title

      Proceedings of the Japan Academy 85, Ser.A, No.8

      Pages: 112-117

    • NAID

      40016807007

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The best constant of Soboelv inequality corresponding to a bending problem of a beam on an interval2009

    • Author(s)
      K.Takemura
    • Journal Title

      Tsukuba Journal of Mathematics 33, No.2

      Pages: 253-280

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 弾性基盤上の張力をかけた棒のたわみの2点境界値問題と対応するソボレフ不等式の最良定数2009

    • Author(s)
      山岸弘幸
    • Journal Title

      日本応用数理学会論文誌 19, No.4

      Pages: 489-518

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Presentation] カイラル型カーボンナノチューブ上の離散ソボレフ不等式の最良定数2013

    • Author(s)
      亀高惟倫
    • Organizer
      日本数学会
    • Place of Presentation
      京都大学
    • Year and Date
      2013-03-23
    • Related Report
      2012 Final Research Report
  • [Presentation] 小さいフラーレンとカーボンナノチューブ上の離散ソボレフ不等式の最良定数2012

    • Author(s)
      亀高惟倫
    • Organizer
      日本数学会
    • Place of Presentation
      九州大学
    • Year and Date
      2012-09-19
    • Related Report
      2012 Final Research Report
  • [Presentation] The best constant of Sobolev inequality for a discrete Laplacian on Mobius ladder2012

    • Author(s)
      Kazuo Takemura
    • Organizer
      INTERNATIONAL CONGRESS ONMATHEMATICAL PHYSICS ICMP12
    • Place of Presentation
      Denmark
    • Year and Date
      2012-08-06
    • Related Report
      2012 Final Research Report
  • [Presentation] The best constant of discrete Sobolev inequality on the smallest carbon nano tube2012

    • Author(s)
      Yoshinori Kametaka
    • Organizer
      INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS ICMP12
    • Place of Presentation
      Denmark
    • Year and Date
      2012-08-06
    • Related Report
      2012 Final Research Report
  • [Presentation] The best constant of a Sobolev-type inequality which corresponds to Heaviside and Thomson cable with periodic boundary condition2011

    • Author(s)
      Kazuo Takemura
    • Organizer
      Equadiff 2011
    • Place of Presentation
      Loughborough University, England
    • Year and Date
      2011-08-02
    • Related Report
      2012 Final Research Report
  • [Presentation] The Best constant of Sobolev-type inequality corresponding to higher-order heatoperator2011

    • Author(s)
      Yoshinori Kametaka
    • Organizer
      Equadiff 2011
    • Place of Presentation
      Loughborough University, England
    • Year and Date
      2011-08-02
    • Related Report
      2012 Final Research Report
  • [Presentation] The best constant of a Sobolev-type inequality which corresponds to Heaviside and Thomson cable with periodic boundary condition2011

    • Author(s)
      Kazuo Takemura
    • Organizer
      Equadiff 2011
    • Place of Presentation
      Loughborough University
    • Year and Date
      2011-08-02
    • Related Report
      2011 Annual Research Report
  • [Presentation] The Best constant of Soboelv-type inequality corresponding to higher-order heat operator2011

    • Author(s)
      Yoshinori Kametaka
    • Organizer
      Equadiff 2011
    • Place of Presentation
      Loughborough University
    • Year and Date
      2011-08-02
    • Related Report
      2011 Annual Research Report
  • [Presentation] The best constant of Sobolev inequality corresponding to clamped-free boundary value problem for (-1)^M(d/dx)^2M2010

    • Author(s)
      Kazuo Takemura
    • Organizer
      Czech-Japanese Seminar in Applied Mathematics 2010
    • Place of Presentation
      Telc, Czech republic
    • Year and Date
      2010-09-02
    • Related Report
      2012 Final Research Report
  • [Presentation] The best constant of Sobolev inequality corresponding to clamped-free boundary value problem for (-1)^M(d/dx)^(2M)2010

    • Author(s)
      K.Takemura
    • Organizer
      Czech-Japanese Seminar in Applied Mathematics 2010
    • Place of Presentation
      Telc, Czech republic
    • Year and Date
      2010-09-02
    • Related Report
      2010 Annual Research Report
  • [Presentation] Free boundary value problem for (-1)^M(d/dx)^2M and the best constant of Sobolev inequality2009

    • Author(s)
      Kazuo Takemura
    • Organizer
      7th International ISAAC Congress
    • Place of Presentation
      England
    • Year and Date
      2009-07-14
    • Related Report
      2012 Final Research Report
  • [Presentation] Free boundary value problem for(-1)^M(d/dx)^<2M> and the best constant of Sobolev inequality2009

    • Author(s)
      K.Takemura
    • Organizer
      7th International ISAAC Congress
    • Place of Presentation
      Imperial College London
    • Year and Date
      2009-07-14
    • Related Report
      2009 Annual Research Report
  • [Presentation] Hierarchical structure of Green function for a bending problem of a beam2009

    • Author(s)
      Yoshinori Kametaka
    • Organizer
      International Conference on Differential Equations and Applications
    • Place of Presentation
      Hanoi University of Technology, Vietnam
    • Year and Date
      2009-05-07
    • Related Report
      2012 Final Research Report
  • [Presentation] Hierarhical structure of Green function for a bending problem of a beam2009

    • Author(s)
      Y.Kametaka
    • Organizer
      International Conference on Differential Equations and Applications
    • Place of Presentation
      Hanoi University of Technology
    • Year and Date
      2009-05-07
    • Related Report
      2009 Annual Research Report
  • [Presentation] The best constant of Sobolev inequality for a discrete Laplacian on Mobius ladder

    • Author(s)
      Kazuo Takemura
    • Organizer
      INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS ICMP12
    • Place of Presentation
      デンマーク
    • Related Report
      2012 Annual Research Report
  • [Presentation] The best constant of discrete Sobolev inequality on the smallest carbon nano tube

    • Author(s)
      Yoshinori Kametaka
    • Organizer
      INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS ICMP12
    • Place of Presentation
      デンマーク
    • Related Report
      2012 Annual Research Report
  • [Presentation] カイラル型カーボンナノチューブ上の離散ソボレフ不等式の最良定数

    • Author(s)
      亀高惟倫
    • Organizer
      日本数学会,函数解析学
    • Place of Presentation
      京都大学
    • Related Report
      2012 Annual Research Report
  • [Presentation] 小さいフラーレンとカーボンナノチューブ上の離散ソボレフ不等式の最良定数

    • Author(s)
      亀高惟倫
    • Organizer
      日本数学会,函数解析学
    • Place of Presentation
      九州大学
    • Related Report
      2012 Annual Research Report

URL: 

Published: 2009-04-01   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi