On asymptotic behavior and interface curve of solution for Keller-Segel system of degenerate type
Project/Area Number |
21540197
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Osaka City University (2011) Tsuda College (2009-2010) |
Principal Investigator |
SUGIYAMA Yoshie 大阪市立大学, 大学院・理学研究科, 教授 (60308210)
|
Project Period (FY) |
2009 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2011: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2010: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2009: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 退化型 / Keller-Segel系 / 爆発解 / 測度値解 / 有限時間爆発 / 時間大域解 / 退化放物型方程式 / デルタ関数 / 退化型Keller-Segel系 / 界面曲線 / 有限伝播性 / 部分正則性定理 |
Research Abstract |
Measure valued solution : The time global solution has been constructed for Keller-Segel system of semi-linear type by expanding the functional space to the measure valued solution. Asymptotics : We have proved that the solution of Keller-Segel system behaves like a stationary solution asymptotically as time tends to infinity. Uniqueness : We have established the functional space which the weak solution becomes unique. Finite speed propagation : The existence of solution and the extinction phenomena has been proved for Keller-Segel system of singular type.
|
Report
(4 results)
Research Products
(57 results)