Study on p-adic cohomology, homotopy and overconvergent isocrystals
Project/Area Number |
21740003
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | The University of Tokyo |
Principal Investigator |
SHIHO Atsushi 東京大学, 大学院・数理科学研究科, 准教授 (30292204)
|
Project Period (FY) |
2009 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2010: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 過収束アイソクリスタル / 対数的収束アイソクリスタル / 対数的構造 / p進微分方程式 / p進表現 / 可積分接続 / p進非リュービル数 / p進微分方程式 / 純性定理 / p進解析 |
Research Abstract |
I proved the following results on overconvergent isocrystal, which is a certain p-adic differential equation. First, I proved the theorem of logarithmic extension for overconvergent isocrystals. Next I proved the theorem of cut-by-curves criterion for the log extendability of overconvergent isocrystals and the overconvergence of modules with integrable connections. Moreover, I proved a kind of purity theorem for overconvergent F-isocrystals. I defined the category of certain parabolic unit-root log convergent F-isocrystals and proved that it is equivalent to the category of tamely ramified p-adic representations of fundamental groups. Also, I proved a certain generalization of a result of Ogus-Vologodsky on the category of modules with integrable connection and the category of Higgs modules.
|
Report
(5 results)
Research Products
(47 results)