• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The harmonic volume for compact Riemann surfaces as a function on the moduli space of Riemann surfaces.

Research Project

Project/Area Number 21740057
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionKisarazu National College of Technology

Principal Investigator

TADOKORO Yuuki  木更津工業高等専門学校, 基礎学系, 准教授 (10435414)

Project Period (FY) 2009 – 2011
Project Status Completed (Fiscal Year 2011)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2011: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2010: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2009: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords調和体積 / 反復積分 / リーマン面 / モジュライ空間 / 写像類群 / トポロジー
Research Abstract

Harris defined the harmonic volume for compact Riemann surfaces, using Chen's iterated integrals. It depends only on the complex structure of compact Riemann surfaces. We obtain the trace map images of the values of certain harmonic volumes for some cyclic quotients of Fermat curves. These provide the algorithm showing that the algebraic cycles called by the Ceresa cycles are not algebraically equivalent to zero in the Jacobian varieties. We apply the method to the case for the prime N<1000 with N=1 modulo 3.

Report

(4 results)
  • 2011 Annual Research Report   Final Research Report ( PDF )
  • 2010 Annual Research Report
  • 2009 Annual Research Report
  • Research Products

    (14 results)

All 2012 2011 2010 2009

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (12 results)

  • [Journal Article] A nontrivial algebraic cycle in the Jacobian variety of the Fermat sextic2009

    • Author(s)
      Yuuki Tadokoro
    • Journal Title

      Tsukuba J. Math. 33

      Volume: no.1 Pages: 29-38

    • NAID

      120006309451

    • URL

      http://projecteuclid.org/euclid.tkbjm/1251833205

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] A nontrivial algebraic cycle in the Jacobian variety of the Fermat sextic2009

    • Author(s)
      田所勇樹
    • Journal Title

      Tsukuba Journal of Mathematics 1巻

      Pages: 29-38

    • NAID

      120006309451

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Presentation] Nontrivial algebraic cycles in the Jacobian varieties of some quotients of Fermat curves2012

    • Author(s)
      田所勇樹
    • Place of Presentation
      東京工業大学
    • Year and Date
      2012-02-07
    • Related Report
      2011 Annual Research Report 2011 Final Research Report
  • [Presentation] Nontrivial algebraic cycles in the Jacobian varieties of some quotients of Fermat curves2012

    • Author(s)
      田所勇樹
    • Organizer
      代数幾何セミナー
    • Place of Presentation
      京都大学理学部
    • Year and Date
      2012-02-06
    • Related Report
      2011 Annual Research Report
  • [Presentation] Nontrivial algebraic cycles in the Jacobian varieties of some quotients of Fermat curves2011

    • Author(s)
      田所勇樹
    • Organizer
      日本数学会トポロジー分科会一般講演
    • Place of Presentation
      早稲田大学
    • Year and Date
      2011-03-21
    • Related Report
      2011 Final Research Report
  • [Presentation] Nontrivial algebraic cycles in the Jacobian varieties of some quotients of Fermat curves2010

    • Author(s)
      田所勇樹
    • Organizer
      研究集会「トポロジーの現在と未来」
    • Place of Presentation
      文部省共済組合箱根合宿所
    • Year and Date
      2010-12-21
    • Related Report
      2011 Final Research Report
  • [Presentation] Nontrivial algebraic cycles in the Jacobian varieties of some quotients of Fermat curves2010

    • Author(s)
      田所勇樹
    • Organizer
      研究集会「トポロジーの現在と未来」
    • Place of Presentation
      箱根
    • Year and Date
      2010-12-21
    • Related Report
      2010 Annual Research Report
  • [Presentation] Nontrivial algebraic cycles in the Jacobian varieties of some quotients of Fermat curves2010

    • Author(s)
      田所勇樹
    • Organizer
      研究集会「リーマン面に関連する位相幾何学」
    • Place of Presentation
      東京大学
    • Year and Date
      2010-09-05
    • Related Report
      2011 Final Research Report
  • [Presentation] Nontrivial algebraic cycles in the Jacobian varieties of some quotients of Fermat curves2010

    • Author(s)
      田所勇樹
    • Organizer
      研究集会「リーマン面に関する位相幾何学」
    • Place of Presentation
      東京大学数理科学研究科
    • Year and Date
      2010-09-05
    • Related Report
      2010 Annual Research Report
  • [Presentation] A nontrivial algebraic cycle in the Jacobian variety of the Klein quartic2010

    • Author(s)
      田所勇樹
    • Organizer
      Teichmuller Theory and its Interactions in Mathematics and Physics
    • Place of Presentation
      Centre de Recerca Matematica, Bellaterra(スペイン)
    • Related Report
      2011 Final Research Report
  • [Presentation] A nontrivial algebraic cycle in the Jacobian variety of the Klein quartic2010

    • Author(s)
      田所勇樹
    • Organizer
      Teichmuller Theory and its Interactions in Mathematics and Physics
    • Place of Presentation
      Centre de Recerca Matematica, Bellaterra, Spain
    • Related Report
      2010 Annual Research Report
  • [Presentation] リーマン面の調和体積とその応用2009

    • Author(s)
      田所勇樹
    • Organizer
      第52回函数論シンポジウム
    • Place of Presentation
      大阪府立大学
    • Year and Date
      2009-11-23
    • Related Report
      2011 Final Research Report
  • [Presentation] Riemann 面の調和体積とその応用2009

    • Author(s)
      田所勇樹
    • Organizer
      第52回函数論シンポジウム
    • Place of Presentation
      大阪府立大学(大阪府)
    • Year and Date
      2009-11-23
    • Related Report
      2009 Annual Research Report
  • [Presentation] A nontrivial algebraic cycle in the Jacobian variety of the Klein quartic2009

    • Author(s)
      田所勇樹
    • Place of Presentation
      北海道大学
    • Year and Date
      2009-07-06
    • Related Report
      2011 Final Research Report

URL: 

Published: 2009-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi