Project/Area Number |
21H03800
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 90110:Biomedical engineering-related
|
Research Institution | Nagasaki International University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
榎本 彩乃 長崎国際大学, 薬学部, 講師 (30826186)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2023: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥9,100,000 (Direct Cost: ¥7,000,000、Indirect Cost: ¥2,100,000)
Fiscal Year 2021: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
|
Keywords | 磁気共鳴 / MRI / 高感度 / イメージング / DNP / 装置開発 |
Outline of Research at the Start |
一般的代謝過程に適応で逐次的な計測が可能で、臨床機器へと展開可能な技術要素と感度を有する常温他核種DNP-MRI装置を開発し、疾患モデルに応用することで、代謝過程全般に応用可能な生体代謝リアルタイム分子イメージングの装置の試作実証を行う。試作機を製作後、従来機を用いて代謝動態変化を明らかにしてきた、がん・糖尿病モデル等において手法間比較が可能な前立腺がんモデルの検討により、本手法の有用性を実証する。
|
Outline of Final Research Achievements |
The purpose of this research was to develop and demonstrate real-time molecular imaging technology for biological metabolism that can be applied to various metabolic processes that require time for distribution and metabolism. The developed device is based on a magnetic field switch method using two different magnetic fields. The idea is to combine the high sensitivity achieved by the DNP effect with an MRI measurement magnetic field that can be used for clinical measurements in the future. We prototyped a room-temperature DNP-MRI device using a magnetic field switch that performs DNP excitation and signal detection at different magnetic field intensities, and analyzed its various characteristics.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、極低温核偏極(DNP)迅速溶融法タイプのDNP-MRIが開発され、米国では前立腺癌における代謝動態のリアルタイム計測の臨床研究が行われている。一方で、1回きりの偏極化と数十秒から数分程度の偏極寿命のため、分子プローブの投与から標的臓器への分布、代謝に時間を要する一般的代謝過程には適応困難であり、適用範囲が限定される状況であった。常温DNP-MRIは相対的に低感度であるが、繰り返し励起が可能な手法であり、一般的な代謝課程への適応性が高いと考え、原理実証を行なった。磁場不均一性・ゆらぎ等の影響が示唆されたが、今後の高精度化により実用化が可能であることが示唆された。
|