• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

代数多様体上の直線束の正値性に関する研究

Research Project

Project/Area Number 21K03201
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionOkayama University

Principal Investigator

伊藤 敦  岡山大学, 環境生命自然科学学域, 准教授 (90712240)

Project Period (FY) 2021-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2025: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2024: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Keywordsセシャドリ定数 / グロモフ幅 / 束幅 / カラビ-ヤウ多様体 / movable cone予想 / シジジー / アーベル多様体 / 代数多様体 / 直線束の正値性
Outline of Research at the Start

代数多様体上の直線束が適当な正値性を持てば,その代数多様体から射影空間への(有理)写像を構成することができ,その写像を通して代数多様体の幾何的性質を調べることができる.本研究では様々な不変量を通して代数多様体の上の直線束の正値性を研究し,またそれを用いて代数多様体の幾何的性質を理解する.具体的にはSeshadri定数やbasepoint freeness threshold, dual defectなどの不変量を研究する.

Outline of Annual Research Achievements

多面体から定まるトーリック多様体とその上の豊富な直線束に対し,以下の3つの不変量(いずれも正の実数)に着目した.1つ目のセシャドリ定数は,その直線束の正値性をはかる代数幾何の不変量である.2つ目のグロモフ幅は,開球のシンプレクティック埋め込みに関するシンプレクティック幾何の不変量である.3つ目の束幅は,多面体の大きさに関する凸幾何の不変量である.多面体Pの束幅をw(P)とすると,対応するトーリック多様体のセシャドリ定数やグロモフ幅はc w(P)以上かつw(P)以下であることが知られている.ただしcは次元のみに依存する定数である.具体的なcの値も求められているが,cとしてとれる最大の値がいくつであるかは2次元以上では知られていなかった.
そこで当該年度は主に2次元の場合を研究した.特に2次元の場合に3/4がcとしてとれる最大の値であることを示すことができた.またセシャドリ定数やグロモフ幅が3/4 w(P)に一致するような多面体Pを決定した.この結果はプレプリントとして発表する予定である.

またアーベル多様体上の豊富な直線束のbasepoint-freeness threshold(以下BFTと略す)という不変量についても研究した.偏極アーベル多様体に対し,「型」と呼ばれる正の整数の列が定まる.以前の研究で代表者は与えられた型の一般の偏極アーベル多様体に対しBFTを型に現れる正の整数を用いて上からの評価を行った.当該年度はその評価の改良について研究したが,とくに新しい結果は得られなかった.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

2次元トーリック多様体のセシャドリ定数やグロモフ幅などの正値性に関する不変量について,束幅を用いて良い評価を得ることができたため.

Strategy for Future Research Activity

2次元の場合に得られた結果が3次元以上の場合にどうなるかを調べる.またアーベル多様体上のbasepoint-freeness thresholdに関する研究も続ける.

Report

(3 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (11 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (5 results) (of which Invited: 5 results) Remarks (1 results)

  • [Int'l Joint Research] IMAR(ルーマニア)

    • Related Report
      2022 Research-status Report
  • [Journal Article] On Syzygies of projective bundles on abelian varieties (Raychaudhury Debaditya氏の論文Continuous CM-regularity and generic vanishingのappendix)2024

    • Author(s)
      Ito Atsushi
    • Journal Title

      Advances in Geometry

      Volume: 24 Issue: 1 Pages: 34-37

    • DOI

      10.1515/advgeom-2023-0028

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The movable cone of Calabi-Yau threefolds in ruled Fano manifolds2024

    • Author(s)
      Ito Atsushi、Lai Ching-Jui、Wang Sz-Sheng
    • Journal Title

      Journal of Geometry and Physics

      Volume: 195 Pages: 105053-105053

    • DOI

      10.1016/j.geomphys.2023.105053

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Projective normality and basepoint‐freeness thresholds of general polarized abelian varieties2023

    • Author(s)
      Ito Atsushi
    • Journal Title

      Bulletin of the London Mathematical Society

      Volume: 55 Issue: 6 Pages: 2793-2816

    • DOI

      10.1112/blms.12895

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] Corrigendum to “Successive minima of line bundles” [Adv. Math. 365 (2020) 107045]2023

    • Author(s)
      Ambro Florin, Ito Atsushi
    • Journal Title

      Advances in Mathematics

      Volume: 420 Pages: 108966-108966

    • DOI

      10.1016/j.aim.2023.108966

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Review of some recent results on linear systems on abelian varieties2023

    • Author(s)
      伊藤 敦
    • Organizer
      第1回熱海代数幾何学研究集会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Projective normality of general polarized abelian varieties2023

    • Author(s)
      伊藤敦
    • Organizer
      K3, Enriques Surfaces, and Related Topics
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Projective normality of general polarized abelian varieties2022

    • Author(s)
      伊藤 敦
    • Organizer
      城崎代数幾何学シンポジウム 2022
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Linear systems on general polarized abelian varieties of type (1,...,1,d)2021

    • Author(s)
      伊藤 敦
    • Organizer
      都の西北 代数幾何学シンポジウム 2021 「接束の正値性とその周辺」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Linear systems on abelian varieties via M-regularity of Q-twisted sheaves2021

    • Author(s)
      伊藤 敦
    • Organizer
      第66回 代数学シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Remarks] Atsushi Ito

    • URL

      https://sites.google.com/site/atsushiito221/

    • Related Report
      2023 Research-status Report 2022 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi