• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Global solutions to the Cauchy problem for systems of quasi-linear wave equations satisfying the weak null condition

Research Project

Project/Area Number 21K03324
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionMie University

Principal Investigator

Hidano Kunio  三重大学, 教育学部, 教授 (00285090)

Co-Investigator(Kenkyū-buntansha) 横山 和義  北海道科学大学, 工学部, 教授 (20316243)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords非線形波動方程式 / 初期値問題 / 時間大域解 / 零条件 / 波動方程式 / 半線形波動方程式 / null condition / weak null condition / global existence / blow up / wave equation / 準線形波動方程式
Outline of Research at the Start

「非線形項が, 零条件(null condition)は満たさないが弱零条件(weak null condition)は満たしているときに, 空間3次元における非線形波動方程式系の初期値問題は, 小さくなめらかな任意の初期値に対して時間大域解をもつか」という問題は重要な未解決問題として知られている. 完全に解決することは大変な難問であるとしても, ここ40年ほどの知識と技法の蓄積のおかげもあり, 国内外で研究が進展している. 本研究では, この問題の難しさがどこにあるのかを解き明かしつつ, 研究を進めていく過程で発生する諸問題を解決していくものである.

Outline of Final Research Achievements

The Cauchy problem for a 2-speed and 3-component semi-linear system of wave equations has been studied in three space dimensions. The standard null condition, which is a sufficient condition for global existence of solutions with small data, is violated for the system, and hence a loss of time decay occurs in a certain component. We may reasonably expect that some gain of time decay will occur in the nonlinear interaction between such component and the other one with different propagation speed. In fact, it is technically quite difficult to observe such gain of time decay. At the cost of assuming radial symmetry of the equations and the data, we have succeeded in showing global existence of small, radial solutions for small, radial data. A certain related problem in one space dimension has been also studied.

Academic Significance and Societal Importance of the Research Achievements

空間3次元における非線形波動方程式系の初期値問題が, 小さくなめらかな初期値に対して時間大域解をもつための非線形項の形状に関する条件として知られる零条件は, あくまでも十分条件であり必要条件ではない. そこで, 零条件が破綻しているものの, それでも小さくなめらかな初期値に対して時間大域解が存在するような非線形項にはどのようなものがあるのかを追求する方向で研究を進めてみた.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (5 results)

All 2024 2023 2022 2021

All Journal Article (1 results) (of which Open Access: 1 results) Presentation (4 results) (of which Invited: 1 results)

  • [Journal Article] Proceedings of 48th Sapporo Symposium on Partial Differential Equations2023

    • Author(s)
      Kunio Hidano
    • Journal Title

      Hokkaido University technical report series in Mathematics

      Volume: 185 Pages: 1-130

    • DOI

      10.14943/108104

    • Year and Date
      2023-08-08
    • Related Report
      2023 Annual Research Report
    • Open Access
  • [Presentation] Global existence for a 2-speed and 3-component semilinear system of wave equations in 3D2024

    • Author(s)
      肥田野 久二男, 横山 和義
    • Organizer
      日本数学会 2024年度年会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Global existence for 1-d semi-linear, multiple-speed systems of wave equations with the null condition2023

    • Author(s)
      肥田野 久二男
    • Organizer
      松本偏微分方程式研究集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Point-wise estimation approach to the 1-d semi-linear wave equation with the null condition2022

    • Author(s)
      肥田野 久二男
    • Organizer
      駿河台偏微分方程式研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] Global existence and blow up for systems of nonlinear wave equations related to the weak null conditions2021

    • Author(s)
      横山 和義
    • Organizer
      The 18th Linear and Nonlinear Waves
    • Related Report
      2021 Research-status Report
    • Invited

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi