• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fundamental Study on Risk Resilience Control for Autonomous Driving Based on Driving Environmental Risk Structuration

Research Project

Project/Area Number 21K03977
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 20020:Robotics and intelligent system-related
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Raksincharoensak Pongsathorn  東京農工大学, 工学(系)研究科(研究院), 教授 (30397012)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywordsモビリティ / 運動制御 / 予防安全 / 自動運転 / 事故回避 / 交通事故 / 交差点 / リスク予測 / 交通機械
Outline of Research at the Start

(1)交通環境危険度(リスク)の定量化・構造化:交通文脈から起こりうる危険度を合理的に予測する手法を提案する。
(2)リスクレジリエンスコントロールの設計: 定量化した交通環境リスクに対し、そのリスクから早い段階で回避し、通常運転状態に戻る「リスクレジリエンスコントロール」を提案する。
(3)リスクレジリエンスコントロールの個別適合設計: (2)に加え、人間の状態変化に適合した車両運動制御系を設計する。

Outline of Final Research Achievements

This research aims to construct an automated driving technology for accident prevention and early avoidance, focusing on a fundamental research on risk resilience control methodology, which enables the risk level prediction in next few seconds ahead based on the driving environment and road context using risk potentials. The model determines normative driving to minimize risk, and guides the driver to safe driving behavior. Specifically, a motion planning and control system was constructed in the way that the behavior of surrounding vehicles, pedestrians, etc. are modeled based on driving data from the actual road driving. The control system calculates a trajectory and speed model based on the risk potential. Next, in the second step, a speed planning method adapted to road traffic context information was devised and its effectiveness was verified. This fundamental research aims to provide design guidelines for vehicle motion control systems to reasonably estimate the risk level.

Academic Significance and Societal Importance of the Research Achievements

本研究課題は、従来の自動車運動力学・制御による物理モデルに加え、交通環境リスクの多様性に対応可能な情報科学モデルを融合させて、サイバーフィジカルシステムとして事故予防メカニズムを学術的に見出すものであり、交通事故ゼロに対する学術的研究である。また、自動車以外のモビリティを設計する上でも安全指針になりうる応用範囲の広い研究であり、社会的な波及効果も大きいと考える。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (9 results)

All 2024 2023 2022 2021 Other

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (6 results) (of which Int'l Joint Research: 4 results) Remarks (1 results)

  • [Journal Article] Social Force Model-Based Adaptive Parameters Collision Avoidance Method Considering Motion Uncertainty of the Pedestrian2024

    • Author(s)
      Zhang Yan、Zhang Xingguo、Fujinami Yohei、Raksincharoensak Pongsathorn
    • Journal Title

      IEEE Access

      Volume: 12 Pages: 794-809

    • DOI

      10.1109/access.2023.3347779

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Robust Optimal Braking Policy for Avoiding Collision With Front Bicycle2023

    • Author(s)
      Shen Xun、Zhang Yan、Zhang Xingguo、Raksincharoensak Pongsathorn、Hashimoto Kazumune
    • Journal Title

      IEEE Open Journal of Intelligent Transportation Systems

      Volume: 4 Pages: 943-954

    • DOI

      10.1109/ojits.2023.3335397

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Risk-predictive Path Planning Considering Occlusion for Urban Automated Driving2023

    • Author(s)
      Yohei Fujinami, Pongsathorn Raksincharoensak
    • Organizer
      International Symposium on Future Active Safety Technology Towards Zero-Traffic-Accidents
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ヒヤリ経験のデータから駆動する 推奨速度ドライバモデルの構築に向けたデータ選別法の探究2022

    • Author(s)
      齊藤裕一, 伊藤誠, ポンサトーン・ラクシンチャラーンサク
    • Organizer
      2022年度自動車技術会秋季大会学術講演会
    • Related Report
      2022 Research-status Report
  • [Presentation] Motion Planning and Control Based on Risk Field for Risk Predictive Driving Assist System Design2022

    • Author(s)
      Pongsathorn Raksincharoensak
    • Organizer
      15th International Symposium on Advanced Vehicle Control (AVEC’22)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Proactive Braking Control Design Based on Risk Assessment at Intersection Right-Turn2022

    • Author(s)
      Yohei Fujinami, Pongsathorn Raksincharoensak
    • Organizer
      15th International Symposium on Advanced Vehicle Control (AVEC’22)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Context-Sensitive Driver Model for Determining Recommended Speed in Intersection Driving Scenarios2021

    • Author(s)
      Yuichi Saito, Fumio Sugaya, Shintaro Inoue, Pongsathorn Raksincharoensak, Hideo Inoue
    • Organizer
      6th International Symposium on Future Active Safety Technology Towards Zero-Traffic-Accidents
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 見通しの悪い交差点における推奨速度を決定するコンテキストアウェアドライバモデルの提案2021

    • Author(s)
      齊藤 裕一, 菅谷 文男, 井上 慎太郎, Pongsathorn Raksincharoensak, 井上 秀雄
    • Organizer
      2021年度自動車技術会学術講演会秋季大会
    • Related Report
      2021 Research-status Report
  • [Remarks] https://www.pongsathornlab.com

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi