Project/Area Number |
21K04016
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21010:Power engineering-related
|
Research Institution | Yamagata University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 高温超伝導体 / 遮蔽電流密度 / 有限要素法 / 高速多重極法 / H-行列法 / 前処理技術 / 高性能計算 / 鞍点問題 / Krylov空間法 |
Outline of Research at the Start |
本研究では,高温超伝導体中の遮蔽電流密度を評価するための高速・高精度解析技術を開発し,同技術を用いて超伝導応用機器の設計支援ツールを製作する.本研究で開発される技術は数理モデルと数値解析法の2種類に大きく分かれる.
まず,遮蔽電流密度解析には,超伝導状態を記述するための数理モデルが必要となる.本研究の電磁界解析では,数100Hz以下の周波数領域で有効な数理モデルを提案し,その妥当性を数値的に実証する.
次に,遮蔽電流密度方程式を高速に解く数値解析技術を開発する.この技術が実現すれば,複雑形状をした超伝導応用機器中の遮蔽電流密度を高速・高精度に評価することが可能となる.
|
Outline of Final Research Achievements |
For the case where cracks are contained in a high-temperature superconducting thin film, the shielding current analysis in the film reduces to a generalized saddle-point problem. However, it is well known that the problem is difficult to solve numerically. In the present study, four types of methods for solving a generalized saddle-point problem have been developed and they are collectively called a special AiVRM. In addition, it is numerically demonstrated that a special AiVRM can be a powerful tool for a large-scale shielding current analysis. By implementing a special AiVRM, a numerical code has been developed for shielding current analysis. An acceleration performance of the Superconducting Linear Acceleration (SLA) system is investigated by means of the code. As a result, it is numerically found that the SLA system with a realistic acceleration distance can be realized.
|
Academic Significance and Societal Importance of the Research Achievements |
2050 年までにカーボンニュートラルで持続可能な新しい世界を実現するためには,高温超伝導を含めた革新的科学技術を社会実装する必要がある.特に,高温超伝導体の応用技術は,低炭素社会に対応するためのキーテクノロジーの一つである.近年,高温超伝導応用機器に対してはICT技術の進展に伴うスマート化に対応した高い制御性能も要求される.この意味から,高温超伝導応用機器の設計開発に際しては,超伝導体中を流れる遮蔽電流密度や超伝導体周辺の電磁界の解析が不可欠となっている.本研究は,大規模遮蔽電流密度解析を高速・高精度で実現するための本質的な基礎技術を開発した.
|