• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a system for collecting and analyzing labor environment and productivity data from construction sites using machine learning

Research Project

Project/Area Number 21K04218
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 22010:Civil engineering material, execution and construction management-related
Research InstitutionTokyo City University

Principal Investigator

GOSO TAKASHI  東京都市大学, 建築都市デザイン学部, 准教授 (60412441)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords建設 / 労働環境 / 生産性 / 歩掛 / 動作分類 / 機械学習 / ワークサンプリング / 加速度情報 / 位置情報 / 時刻情報
Outline of Research at the Start

当研究は建設作業員の作業状況や労働環境を明らかにして,生産性データの取得やそれに基づくマネジメント上の改善(設備・導線の是正や,待機状態の抽出・改善などを想定)に資することを目的とする。その基盤として,作業員に装着するセンサーの開発と作業状況の自動判別システム構築がその中心となる。自動判別システムは機械学習を用いるため,教師データ収集としての人手による建設現場のワークサンプリング調査も並行実施される。

Outline of Final Research Achievements

In this study, an automatic analysis system for productivity classification was constructed. Acceleration information was handled as images, and five simple actions, such as "working" and "walking", were classified first, and then classified into nine productivity categories. Although not all of the simple movements could be verified, we were able to discriminate them at a high level, but it was also found that some measures to control over-learning were required. On the other hand, the classification of the productivity motion categories was not highly accurate, because the tasks that the workers engaged in were complex and compound motions. However, the results also indicated the direction of improvement in accuracy by increasing the amount of teacher data and tuning the system.

Academic Significance and Societal Importance of the Research Achievements

本研究で構築するシステムは,労働環境と生産性に関するデータを一定の精度で継続的に取得し,生産現場における問題点を定性的,定量的に認識し,関係者間で共有して向上策を講じるという当たり前のマネジメントを実現するための基盤である.我が国の建設産業ではこういった取り組みは全くなされておらず,建設現場の支援を得て取り組まれた本研究の成果は現場の生産性向上活動に寄与できるものである.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (5 results)

All 2023 2022 2021

All Journal Article (2 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Development of a program for automatic identification of productivity of construction workers2023

    • Author(s)
      Ryuji Kasai , Takashi Goso , Tetsuro Osawa
    • Journal Title

      IOP Conference Series: Earth and Environmental Science, Volume 1195, 8th International Conference of EURO ASIA CIVIL ENGINEERING FORUM 2022 (EACEF-2022)

      Volume: 1195 Issue: 1 Pages: 012042-012042

    • DOI

      10.1088/1755-1315/1195/1/012042

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 機械学習を用いた建設現場の労働環境・生産性データ収集分析システムの開発2022

    • Author(s)
      五艘 隆志 , 武藤 一伸 , 濱野 満 , 大澤 徹郎 , 笠井 琉司
    • Journal Title

      舗装

      Volume: Vol.57, No.6 Pages: 3-8

    • Related Report
      2022 Research-status Report
  • [Presentation] Development of a program for automatic identification of productivity of construction workers2022

    • Author(s)
      Ryuji Kasai, Takashi Goso, Tetsuro Osawa
    • Organizer
      8th International Conference of EACEF 2022 (Euro Asia Civil Engineering Forum)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 事前分類と機械学習の組み合わせによる 生産性区分分類システムの構築2021

    • Author(s)
      大澤 徹郎・五艘 隆志
    • Organizer
      土木学会 第46回土木情報学シンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] 加速度を用いた建設現場作業の自動判別プログラ ムの枠組み構築と実証実験2021

    • Author(s)
      大澤 徹郎・五艘 隆志
    • Organizer
      土木学会 第76回年次学術講演会
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi