• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of screening system for laxative-free CT colonography using hybrid learning

Research Project

Project/Area Number 21K07578
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionNational Institute of Technology(KOSEN), Oshima College

Principal Investigator

Tachibana Rie  大島商船高等専門学校, 情報工学科, 教授 (90435462)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
KeywordsCTコロノグラフィ / 電子クレンジング / 大腸がん検診 / 深層学習 / 機械学習 / 医用システム / Laxative-free
Outline of Research at the Start

大腸がん検診の検査法の一つにCT画像から仮想的に大腸内視鏡画像を生成し,大腸内の診断を行うCTコロノグラフィ検査がある.CTコロノグラフィ検査では,仮想的に腸管洗浄を行う電子クレンジング(electronic cleansing:EC)を用いることで被験者の負担を減らすことが期待できるが緩下剤を服用する必要がある.
本研究課題では,新たに3次元CT画像およびvirtual endoscopyの動画像を用いたハイブリッド学習によるEC法を開発し,大腸がん検診の受診率向上を目指した「緩下剤なしのCTC検査」の実現を目的とする.

Outline of Final Research Achievements

In this study, we developed a self-learning GAN-based EC method using 3D images and a recycle-GAN-based EC method using virtual endoscopy images. The final goal was to implement the best EC method by combining the two methods, but the accuracy of the EC method using virtual endoscopy images has not been more effective. Therefore, the final goal could not have been achieved. However, the self-learning GAN-based EC method was able to perform EC with sub-voxel accuracy on a small dataset with no image annotations.

Academic Significance and Societal Importance of the Research Achievements

開発した自己学習型GANを用いた電子クレンジング手法は従来法に比べ,自然なクレンジング画像の生成を可能とした.臨床現場における使用が可能となれば,従来に比べCTコロノグラフィ検査による電子クレンジングの精度向上が期待でき,大腸がん検診における被験者の負担を減らす効果及び検診率向上が期待できる.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (8 results)

All 2023 2022 Other

All Int'l Joint Research (3 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 3 results)

  • [Int'l Joint Research] Massachusetts General Hospital(米国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Massachusetts General Hospital(米国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Massachusetts General Hospital(米国)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Self-Supervised Adversarial Learning with a Limited Dataset for Electronic Cleansing in Computed Tomographic Colonography: A Preliminary Feasibility Study2022

    • Author(s)
      Rie Tachibana, Janne J. Nappi, Toru Hironaka, Hiroyuki Yoshida
    • Journal Title

      Cancers

      Volume: 14 Issue: 17 Pages: 4125-4125

    • DOI

      10.3390/cancers14174125

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Performance evaluation of self-supervised 3D GAN for electronic cleansing in photon-counting CT colonography2023

    • Author(s)
      Rie Tachibana, Janne Nappi, Toru Hironaka, Stephen R. Yoshida, Dufan Wu, Rajiv Gupta, Katsuyuki Taguchi, Hiroyuki Yoshida
    • Organizer
      The 37th International Conference on Computer-Assisted Radiology and Surgery
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Electronic cleansing in photon-counting CT colonography by use of self-supervised 3D-GAN2023

    • Author(s)
      Rie Tachibana, Janne Nappi, Toru Hironaka, Stephen Yoshida, Dufan Wu, Rajiv Gupta, Hiroyuki Yoshida
    • Organizer
      SPIE Medical Imaging 2023
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Performance evaluation of self-supervised 3D GAN for electronic cleansing in CT colonography2022

    • Author(s)
      Rie Tachibana, Janne J. Nappi, Toru Hironaka, Hiroyuki Yoshida
    • Organizer
      The 36th International Conference on Computer-Assisted Radiology and Surgery
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Recycle-GAN を用いた大腸 CT 画像における電子洗浄法 に関する基礎検討2022

    • Author(s)
      河野冬紀,橘理恵
    • Organizer
      2022 年度(第 73 回)電気・情報関連学会中国支部連合大会
    • Related Report
      2022 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi