Project/Area Number |
21K11510
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 59030:Physical education, and physical and health education-related
|
Research Institution | Kyoto Tachibana University |
Principal Investigator |
Kai Yoshihiro 京都橘大学, 健康科学部, 准教授 (90632852)
|
Co-Investigator(Kenkyū-buntansha) |
村田 伸 京都橘大学, 健康科学部, 教授 (00389503)
来田 宣幸 京都工芸繊維大学, 基盤科学系, 教授 (50452371)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 姿勢評価 / 画像認識 / 運動器疾患 / 身体機能 / 加齢変化 / 姿勢評価法 / aging biomarker |
Outline of Research at the Start |
本研究では、筋骨格系における新たなAging Biomarkerとして、加齢に伴う姿勢変化に注目し、機械学習による画像認識技術を用いて、個人の姿勢をその特徴量や身体情報からクラス分類できる新しい姿勢評価法を開発を目指す。具体的には、デジタルカメラで撮影された高齢者の姿勢画像に対して、専門家の視診による判別と定量的に評価された脊柱彎曲を機械学習のための教師データとし、姿勢画像のパターン認識が可能なアルゴリズムを開発する。また、筋骨格の老化指標である骨格筋量や骨量、上下肢筋力、歩行速度との関連性を検証するとともに、追跡調査を行うことで開発された姿勢評価法の予測妥当性を検証する。
|
Outline of Final Research Achievements |
Changes in posture due to aging are one of the indicators of the health status of elderly individuals. In this study, we have developed an evaluation system using image recognition technology based on machine learning, enabling non-medical personnel to easily detect posture changes. The subjects were community-dwelling elderly individuals, and their static standing postures were photographed from the sagittal plane using a digital camera. Additionally, the subjects' postures were classified into several categories by physical therapists. Gray-scale and silhouette images were generated from the photographed posture images, and the accuracy of identifying these images was examined. The analysis results showed that both the gray-scale and silhouette images could generally provide judgments similar to those made by the physical therapists.
|
Academic Significance and Societal Importance of the Research Achievements |
従来より、運動器疾患を専門とする整形外科やリハビリテーション分野では、筋骨格の老化度の予測や関節に加わる機械的ストレスの推定、運動障害のメカニズムを予測する指標として、姿勢変化の評価が幅広く用いられてきた。しかしながら、姿勢の変化を客観的に捉えるためには、高価な測定装置や熟練の専門家による評価が必要であり、専門家以外が簡便にかつ客観的に姿勢を評価する術はなかった。専門家でなくとも、姿勢や動作の変化を簡便かつ客観的に評価でき、その結果を筋骨格の老化の指標として活用することができれば、一次予防の観点からも、運動習慣の定着やその行動変容につながる実効的な対処を先制して実施できる可能性がある。
|