• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Dimension and variable selection, simultaneous estimation, and computational environment for information extraction from complex data

Research Project

Project/Area Number 21K11799
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionOkayama University of Science

Principal Investigator

MORI Yuichi  岡山理科大学, 経営学部, 教授 (80230085)

Co-Investigator(Kenkyū-buntansha) 黒田 正博  岡山理科大学, 経営学部, 教授 (90279042)
飯塚 誠也  岡山大学, 全学教育・学生支援機構, 教授 (60322236)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords数量化 / カテゴリカルデータ / クラスタリング / 変数選択 / 加速化 / 主成分分析 / 非計量主成分分析 / 次元縮約 / 非計量多変量手法
Outline of Research at the Start

マーケティングや心理学分野での応用を想定し、尺度混在や非構造のデータなど,複雑な構造をもつデータに対して,潜在的な構造や特徴を抽出する手法を提案する。そのために,複雑性を構成する尺度混在データの統一的処理と非構造部分のデータ変換を施した上で,情報の縮約と分析に価値を付加しない特徴量の削減を,分析の対象とする手法と同時に実行することで,効果的な情報抽出をめざす。また,それらを対話的に考察できるインタフェースと高速な計算が可能な環境を提供する。

Outline of Final Research Achievements

In this study, we developed methods and procedures to deal with mixed measurement level and high-dimensional data in existing methods by (i) reduction of the scale size with minimum information loss, (ii) efficient analysis of the reduced information and complexity, (iii) propose of a procedure that enables processing of mixed measurement level data and text data, and (iv) efficient computation. The existing methods we used are principal component analysis, fuzzy c-means, and text mining. Quantification by non-metric principal component analysis, simultaneous estimation of quantification and dimension reduction, topic model and heat map are used to reduce the size and complexity. In order to obtain the results efficiently, variable reduction and computtional acceleration are also proposed. The effectiveness of the proposed methods/procedures are confirmed by the performance evaluation.

Academic Significance and Societal Importance of the Research Achievements

数量化と次元縮約を同時に行うことで、個々の手法を別々に適用する方法では観察できなかった知見が得られること、このことにより、量的データのために開発されたすべての手法をカテゴリカルデータに適用できるようになることが本研究の学術的な特色である。また、アルゴリズム面で大規模性を克服しようとすることは、迅速に処理結果が得られる計算環境を提供するという点で独創性がある。これらの手法はマーケティングや社会心理学の個別課題を念頭に開発しているが、手法の良い点はお互いに利用し合うことで分野横断的な成果が得られる。さらに、提案手法がデータ分析の発見的情報把握の強力なツールとして活用されることも期待される。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (15 results)

All 2024 2023 2022 2021

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 5 results) Presentation (9 results) (of which Int'l Joint Research: 6 results,  Invited: 1 results) Funded Workshop (1 results)

  • [Journal Article] 数量化と次元縮約を伴ったファジィc-平均法2024

    • Author(s)
      赤木辰伎・森 裕一・黒田正博・飯塚誠也
    • Journal Title

      経営とデータサイエンス

      Volume: 6 Pages: 80-93

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] ビッグファイブパーソナリティとデザイン選択の関連性について2023

    • Author(s)
      千足南々子・森 裕一
    • Journal Title

      経営とデータサイエンス

      Volume: 5 Pages: 125-135

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] テキストマイニングによる傾向・様相の分析2023

    • Author(s)
      稲田 愛・森 裕一
    • Journal Title

      経営とデータサイエンス

      Volume: 5 Pages: 41-53

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Speeding up the convergence of the alternating least squares algorithm using vector ε acceleration and restarting for nonlinear principal component analysis2022

    • Author(s)
      Kuroda, M., Mori, Y., IIzuka, M.
    • Journal Title

      Computational Statistics

      Volume: - Issue: 1 Pages: 243-262

    • DOI

      10.1007/s00180-022-01225-4

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Variable Selection in Nonlinear Principal Component Analysis2022

    • Author(s)
      Katayama, H., Mori, Y., Kuroda, M.
    • Journal Title

      Principal Component Analysis

      Volume: -

    • DOI

      10.5772/intechopen.103758

    • ISBN
      9781803557656, 9781803557663
    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] ファジィクラスタリングにおける高次元質的データの扱い2024

    • Author(s)
      赤木辰伎・森 裕一・黒田正博・飯塚誠也
    • Organizer
      北海道大学情報基盤センター萌芽型共同研究集会「第43回大規模データ科学に関する研究会」
    • Related Report
      2023 Annual Research Report
  • [Presentation] Clustering with quantification and dimension reduction2023

    • Author(s)
      Akaki, T., Mori, Y., Kuroda, M., Iizuka, M.
    • Organizer
      The 8th Japanese-German Symposium on Classification
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Dimension-reduced fuzzy clustering for categorical data2023

    • Author(s)
      Akaki,T., Mori,Y., Kuroda, M., Iizuka, M.
    • Organizer
      The 12th Conference of the Asian Regional Section of the International Association for Statistical Computing (IASC-ARS2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Acceleration and quantification with dimension reduction in fuzzy clustering2023

    • Author(s)
      Akaki,T., Mori,Y., Kuroda, M., Iizuka, M.
    • Organizer
      Statistical Computing And Robust Inference For High Dimensional Data (SCRI2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Acceleration of Computation in Fuzzy Clustering2022

    • Author(s)
      Mori,Y., Akaki,T., Kuroda, M.
    • Organizer
      The IASC-ARS Interim Conference 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 質的データの項目精選-項目反応理論を利用した項目選択の検討-2022

    • Author(s)
      片山浩子,森 裕一
    • Organizer
      日本計算機統計学会第36回シンポジウム
    • Related Report
      2022 Research-status Report
  • [Presentation] Item Selection for qualitative data2022

    • Author(s)
      Katayama, H., Nishiyama, C., Mori, M.
    • Organizer
      The 11th Conference of the Asian Regional Section of the International Association for Statistical Computing (IASC-ARS2022)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Partial least squares for qualitative data2022

    • Author(s)
      Nishiyama, C., Katayama, H., Mori, M.
    • Organizer
      The 11th Conference of the Asian Regional Section of the International Association for Statistical Computing (IASC-ARS2022)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 質的データの項目選択2021

    • Author(s)
      片山浩子,西山ちとせ,森裕一
    • Organizer
      日本消費経済学会第46回全国大会
    • Related Report
      2021 Research-status Report
  • [Funded Workshop] 岡山理科大学マネジメント学会 第9回研究会「Deep learning and Computational aspects」2022

    • Related Report
      2022 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi