Project/Area Number |
21K11958
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61010:Perceptual information processing-related
|
Research Institution | Kanazawa University |
Principal Investigator |
Imamura Kousuke 金沢大学, 電子情報通信学系, 准教授 (00324096)
|
Co-Investigator(Kenkyū-buntansha) |
小林 聡 金沢大学, 保健学系, 教授 (30313638)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | 医用画像処理 / 深層学習 / 診断補助 / 肝線維化ステージ判定 / 画像処理 / 画像診断 |
Outline of Research at the Start |
深層学習による画像処理技術の発達は、現代の医療分野における画像診断において高精度化・高速化の向上に大きく寄与している。本研究は、CT/MRIを用いた画像診断の精度・即時性の向上のためのディープラーニングを用いた画像処理技術を開発する。具体的にはCT/MRIによる画像情報から肝臓の線維化のステージをニューラルネットワークによって判定するシステムの構築である。また、ニューラルネットワーク医師に診断時に注目すべき領域を明示する診断補助手法についての検討も行う。発展的には、肝臓の線維化だけでなく、肝がん等の複数の疾患を検出するための医用画像処理技術の確立も検討する。
|
Outline of Final Research Achievements |
In this study, we constructed a system that automatically determines the stage of hepatic fibrosis using neural network based on medical MRI images. We constructed a system that enables stage determination for each patient by using a network structure in which CNNs are arranged in parallel and performs exchange learning. Furthermore, we constructed a stage determination system based on a network structure using MIL to improve diagnostic accuracy. We also realized automatic selection of slices for diagnosis to determine the stage of hepatic fibrosis using U-net. In these networks for determining the stage of hepatic fibrosis, we investigated diagnostic support using a method to visualize the basis for determination.
|
Academic Significance and Societal Importance of the Research Achievements |
肝臓の線維化と肝発癌の間には強い相関があり、肝癌の早期発見・早期治療のためには肝臓の線維化の程度を知ることが重要である。肝臓の線維化診断のゴールドスタンダードは肝生検だが,侵襲性が高く,被検査者の死亡のリスクもある。ディープラーニングを用いた画像認識で肝臓の線維化を自動的かつ高精度・高速に診断することが可能となれば,被験者への負担が軽減された、より安全な診断の実現が期待できる。またディープラーニングによる画像診断手法の確立は,他の疾患に対しても応用が可能と考えられるため,今後の深層学習の医用画像における応用において意義がある。
|