分散学習ネットワークモデルを用いた病理組織画像の特徴抽出の最適化
Project/Area Number |
21K12111
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 62010:Life, health and medical informatics-related
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
小野 直亮 奈良先端科学技術大学院大学, データ駆動型サイエンス創造センター, 准教授 (60395118)
|
Co-Investigator(Kenkyū-buntansha) |
大内田 研宙 九州大学, 大学病院, 講師 (20452708)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 深層学習 / 病理組織画像 / 教師なしクラスタリング / 免疫染色 / 膵がん / 多種染色法 |
Outline of Research at the Start |
病理組織画像のような特殊な画像に対してニューラルネットワークを適用しようとする場合には、既存のモデルではなく画像の特性に合わせた特徴抽出の方法を最適化させる必要がある。本研究では申請者が開発した分散学習型オートエンコーダーを用い、教師なし学習による画像の特徴のクラスタリングを学習させる。学習したモデルをもとに、膵がんの細胞の形状のパターンを分類するための深層学習モデルを構築し、膵臓組織の細胞の表現型を定量的な指標で表せるようにすることで、膵がんの状態の理解と分析につがなると期待できる。
|
Outline of Annual Research Achievements |
本研究では、深層学習を用いてマウスの膵臓の腫瘍からサンプリングした組織を5つの異なる染色技術、 すなわち、HE (ヘマトキシリン & エオシン染色)、MT (マッソントリクローム染色)、およびCD31 (分化クラスター 31)、CK19 (サイトケラチン 19)、および Ki67 (増殖マーカー Ki67)の3つの免疫染色方法で染色し、得られた画像から細胞構造の特徴を抽出し、潜在空間に埋め込むモデルを構築した。 病理組織画像からランダムに切り出した画像をもとにVector Quantized Variational Autoencoders (VQ-VAE)をもとにしたオートエンコーダーを用いて特徴抽出を最適化したのち、細胞の種類の異なるパターンを区別するために教師なしクラスタリングの手法をもちいて学習させた。クラスター間の画像の特徴の差異を最大化する情報量最大化のアルゴリズムによって、埋め込まれた潜在空間におけるサンプルの分布を解析し、クラスター構造を最適化した。クラスター間の分離を評価する統計的な指標である Dunn インデックスを用いて、クラスター数に依存する分離の精度を評価し、教師なし学習の課題で最適なクラスター数を決定した。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
オートエンコーダーによる潜在変数への埋め込みモデルによる学習が安定して収束するようになり、元画像が精度良く再現できるだけの特徴が抽出できるようになっている。また、教師なしクラスタリングの結果を統計的に評価することにより、クラスター数の最適な数を選ぶことができた。
|
Strategy for Future Research Activity |
VQ-VAEによる埋め込みが一定の結果を出せるようになったため、ほかの埋め込みモデルによる結果を比較することを検討している。特に、最近の画像生成モデルで着目されている確率拡散モデルを用いた埋め込みと画像生成を利用したクラスタリングを行い、さらに潜在空間の汎化性を高めることを考えている。
|
Report
(2 results)
Research Products
(2 results)