• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Spectral theory of Neumann- Poincare operators and its Generalization

Research Project

Project/Area Number 21K13805
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionShinshu University

Principal Investigator

Miyanishi Yoshihisa  信州大学, 学術研究院理学系, 准教授 (20740236)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsノイマン・ポアンカレ作用素 / 積分作用素 / スペクトル
Outline of Research at the Start

21世紀の数学の発展と応用のためには、積分作用素のスペクトルと呼ばれる構造を、さらに詳しく調べるべきである。実際、様々な積分作用素に対するスペクトルは、解析学、大域解析学、数論や幾何学との関係も深く、世界的にも広く研究されている。

申請者は、積分作用素の一種のノイマン・ポアンカレ作用素(C. Neumann と H. Poincareが名前の由来)と呼ばれる作用素を調べてきており、この研究では、さらに一般の積分作用素やそれらの組み合わせで表せる作用素のスペクトル理論の構築を目指している。

Outline of Final Research Achievements

We obtained the spectral structure of integral operators (So-called Neumann-Poincare operators) for several domains. Such structure deeply depends on the boundary geometry and we proved the precise asymptotics even for boundaries which are smoother than C^2. It is emphasized that the techniques employed in our papers can be applied for many general singular integral operators. Then the applications are considered in physics and pure mathematics. In physics, plasmons of electro-static phenomena are controlled by the spectral structure. In pure mathematics, we also prove the relation between algebraic structure (Partition of an unit interval) and the spectrum.

Academic Significance and Societal Importance of the Research Achievements

本研究はとくに、スペクトル解析の進んでいる擬微分作用素と呼ばれる作用素を特異積分作用素の近似として用いることで、(自己共役でもない)計算の困難な特異積分作用素のスペクトル構造を得る方法を提案している。また、具体的な現象に対応したノイマン・ポアンカレ作用素と呼ばれる作用素のスペクトルによって、3次元(実空間における)の電磁気現象など物理現象の解明にも繋っている。また、積分作用素のスペクトル構造を、代数や幾何にまで応用できることも示している。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (40 results)

All 2023 2022 2021 Other

All Int'l Joint Research (7 results) Journal Article (10 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 9 results) Presentation (14 results) (of which Int'l Joint Research: 4 results,  Invited: 9 results) Remarks (5 results) Funded Workshop (4 results)

  • [Int'l Joint Research] Inha University/KIAS(韓国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Inha University(韓国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Inha University/Seoul National University(韓国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Inha University(韓国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of California, Santa Barbara(米国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Charmers University(スウェーデン)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Saint Petersburg University(ロシア連邦)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Decay Rate of the Eigenvalues of the Neumann-Poincare Operator2023

    • Author(s)
      Fukushima Shota、Kang Hyeonbae、Miyanishi Yoshihisa
    • Journal Title

      Potential Analysis

      Volume: ー

    • DOI

      10.1007/s11118-023-10120-6

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A short note on decay rates of odd partitions: an application of spectral asymptotics of the Neumann?Poincar? operators2023

    • Author(s)
      Miyanishi Yoshihisa
    • Journal Title

      Archiv der Mathematik

      Volume: 121 Issue: 4 Pages: 419-424

    • DOI

      10.1007/s00013-023-01910-w

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] SPECTRAL PROPERTIES OF THE NEUMANN-POINCARE OPERATOR AND CLOAKING BY ANOMALOUS LOCALIZED RESONANCE: A REVIEW2023

    • Author(s)
      S. FUKUSHIMA, Y.-G. JI, H. KANG, and Y. MIYANISHI
    • Journal Title

      Journal of the Korean Society for Industrial and Applied Mathematics

      Volume: 27 Pages: 87-108

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Weyl's law for the eigenvalues of the Neumann--Poincare operators in three dimensions: Willmore energy and surface geometry2022

    • Author(s)
      Miyanishi Yoshihisa
    • Journal Title

      Advances in Mathematics

      Volume: 406 Pages: 108547-108547

    • DOI

      10.1016/j.aim.2022.108547

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Spectral Structure of the Neumann--Poincare Operator on Thin Ellipsoids and Flat Domains2022

    • Author(s)
      Ando Kazunori、Kang Hyeonbae、Lee Sanghyuk、Miyanishi Yoshihisa
    • Journal Title

      SIAM Journal on Mathematical Analysis

      Volume: 54 Issue: 6 Pages: 6164-6185

    • DOI

      10.1137/21m1452275

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Spectral analysis of Neumann-Poincare operator2021

    • Author(s)
      Kazunori Ando, Hyoenbae Kang, Yoshihisa Miyanishi, Mihai Putinar
    • Journal Title

      ROMANIAN JOURNAL OF PURE AND APPLIED MATHEMATICS

      Volume: LXVI (3-4) Pages: 545-575

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Spectral Properties of the Neumann-Poincare Operator in 3D Elasticity2021

    • Author(s)
      Yoshihisa Miyanishi, Grigori Rozenblum
    • Journal Title

      International Mathematics Research Notices

      Volume: 2021(11) Pages: 8715-8740

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Surface localization of plasmons in three dimensions and convexity2021

    • Author(s)
      Kazunori Ando, Hyeonbae Kang, Yoshihisa Miyanishi, Takashi Nakazawa
    • Journal Title

      SIAM Journal on Applied Mathematics

      Volume: 81(3) Pages: 1020-1033

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Spectral structure of the Neumann-Poincare operator on thin domains in two dimensions2021

    • Author(s)
      Kazunori Ando, Hyeonbae Kang, Yoshihisa Miyanishi
    • Journal Title

      Journal d'Analyse Mathematique

      Volume: To appear

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The spectral theory of the Neumann-Poincare operator on convex domains2021

    • Author(s)
      Yoshihisa Miyanishi
    • Journal Title

      2021 RIMS共同研究(公開型) 量子場の数理とその周辺 講究録

      Volume: To appear

    • Related Report
      2021 Research-status Report
  • [Presentation] Decay rate of the eigenvalues of the Neumann-Poincare operator2023

    • Author(s)
      宮西 吉久
    • Organizer
      2023年度 ポテンシャル論研究集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] A short note on decay rates of odd partitions: an application of spectral asymptotics of the Neumann-Poincare operators2023

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      The 20th Linear and Nonlinear Waves
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Layer Potential Type Operator のスペクトル理論2023

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      第66回 函数論シンポジウム
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Layer Potential Type Operator のスペクトル理論 とその応用に向けて2023

    • Author(s)
      宮西 吉久
    • Organizer
      日本数学会 (秋季) 函数方程式分科会(特別講演)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Fundamental solutions in Colombeau locally convex topological algebras2023

    • Author(s)
      宮西 吉久
    • Organizer
      作用素論シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] 薄型領域におけるノイマン・ポアンカレ作用素のスペクトル2022

    • Author(s)
      宮西吉久
    • Organizer
      日本数学会 (年会)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Weyl's law for the Neumann-Poincare operator and unsolved problems2022

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      Inha University seminar
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Some remarks on fundamental solutions in Colombeau algebras2022

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      2022 年夏の作用素論シンポジウム(愛媛)
    • Related Report
      2022 Research-status Report
  • [Presentation] Spectral asymptotics for some operators and related applications2022

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      スペクトル・散乱 待兼山シンポジウム
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Surface localization of plasmons in three dimensions and convexity2021

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      International Conference on Partial Differential Equations Related to Material Science
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 大域解析学: 線形作用素のスペクトル理論とその周辺2021

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      信州大学 理学部 数学科 談話会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] The spectral theory of the Neumann--Poincare operator on various domains and its applications to PDE2021

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      第10回信州関数解析シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] The spectral theory of the Neumann--Poincare operator on convex domains2021

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      2021 RIMS共同研究(公開型) 量子場の数理とその周辺
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Spectral structure of double layer potentials on thin domains2021

    • Author(s)
      Yoshihisa Miyanishi
    • Organizer
      2021 年度ポテンシャル論研究集会
    • Related Report
      2021 Research-status Report
  • [Remarks] 信州大学 学術情報オンラインシステムSOAR

    • URL

      https://soar-rd.shinshu-u.ac.jp/search/detail.html?systemId=uCkCWpcN&lang=ja

    • Related Report
      2023 Annual Research Report
  • [Remarks] 宮西吉久のホームページ

    • URL

      http://math.shinshu-u.ac.jp/~miyanishi/

    • Related Report
      2023 Annual Research Report
  • [Remarks] 信州大学学術情報オンラインシステム

    • URL

      https://soar-rd.shinshu-u.ac.jp/profile/ja.uCkCWpcN.html

    • Related Report
      2022 Research-status Report
  • [Remarks] 線形作用素のスペクトル理論とその応用

    • URL

      https://www.shinshu-u.ac.jp/faculty/science/math/research-general/math-research-miyanishi.html

    • Related Report
      2022 Research-status Report
  • [Remarks] Mini-Workshop

    • URL

      http://math.shinshu-u.ac.jp/~miyanishi/workshop20220127

    • Related Report
      2021 Research-status Report
  • [Funded Workshop] Neumann-Poincare Operator, Layer Potential Theory, Plasmonics and Related Topics @ICIAM2023

    • Related Report
      2023 Annual Research Report
  • [Funded Workshop] Additional Conference: Neumann-Poincare Operator, Layer Potential Theory, Plasmonics and Related Topics2023

    • Related Report
      2023 Annual Research Report
  • [Funded Workshop] 信州微分方程式セミナー2022

    • Related Report
      2022 Research-status Report
  • [Funded Workshop] Mini-Workshop on Mathematical Analysis and Related Topics2021

    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi