• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

First-principles thermodynamics for optimal design of atomic structure and properties of grain boundaries in ceramic materials

Research Project

Project/Area Number 21K14405
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 26020:Inorganic materials and properties-related
Research InstitutionNagoya University

Principal Investigator

Yokoi Tatsuya  名古屋大学, 工学研究科, 講師 (70791581)

Project Period (FY) 2021-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Keywords粒界 / 第一原理計算 / 機械学習 / 熱力学 / 結晶粒界 / 原子間ポテンシャル / 自由エネルギー / セラミックス粒界 / 機械学習型原子間ポテンシャル / 圧縮センシング / 自由エネルギー計算
Outline of Research at the Start

高温域におけるセラミックス粒界の熱力学的安定性に関する情報は、多結晶組織とその特性を制御する上で不可欠である。本研究では、第一原理計算と機械学習、情報科学的手法を統合して、高精度・高速で粒界の自由エネルギー計算が可能な「第一原理熱力学計算法」を確立する。この手法をセラミックス粒界に適用することで、全温度域を対象に、原子構造という根本から粒界構造と熱力学的安定性との関係を解明する。その知見をもとに「セラミックス粒界状態図」の構築を試みる。

Outline of Final Research Achievements

This work attempted to integrate density-functional-theory (DFT) calculations and machine-learning models and to efficiently determine free energies of grain boundaries, in order to understand their thermodynamic stability in ceramics materials. For this purpose, artificial-neural-network potentials were implemented and then combined with lattice dynamics and molecular dynamics simulations.In order to evaluate the predictive power,grain boundaries of Al were chosen as model systems,and their lattice vibrational modes and energetics were predicted by the ANN potential. As a result,our ANN potential was found to accurately predict the finite-temperature properties with the DFT level and practical computational cost, even for grain boundaries absent in training datasets.

Academic Significance and Societal Importance of the Research Achievements

粒界の熱力学的安定性の微視的理解は、有限温度における多結晶材料の材料組織や巨視的特性を緻密制御する上で必須である。しかし理論解析では莫大な計算コストを要するため、系統的な知見は無く、有効な解析手法も確立されていなかった。本研究では第一原理計算と機械学習を組み合わせ、粒界特性を予測する機械学習型原子間ポテンシャルを構築し、その有用性を実証した。これにより、粒界の熱力学的安定性を高効率かつ高精度で予測する技術基盤が確立できた。今後、この手法を酸化物セラミックスを含む種々の材料に展開していくことで、粒界研究の発展に大きく貢献することが期待される。

Report

(3 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • Research Products

    (10 results)

All 2023 2022 2021

All Journal Article (6 results) (of which Peer Reviewed: 6 results) Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results)

  • [Journal Article] Grain-boundary thermodynamics with artificial-neural-network potential: its ability to predict the atomic structures, energetics and lattice vibrational properties for Al2023

    • Author(s)
      T. Yokoi, M. Matsuura, Y. Oshima, K. Matsunaga
    • Journal Title

      Physical Review Materials

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Atomic and electronic structure of grain boundaries in a-Al2O3: A combination of machine learning, first-principles calculation and electron microscopy2023

    • Author(s)
      Yokoi T.、Hamajima A.、Wei J.、Feng B.、Oshima Y.、Matsunaga K.、Shibata N.、Ikuhara Y.
    • Journal Title

      Scripta Materialia

      Volume: 229 Pages: 115368-115368

    • DOI

      10.1016/j.scriptamat.2023.115368

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Atomic structures of grain boundaries for Si and Ge: A simulated annealing method with artificial-neural-network interatomic potentials2023

    • Author(s)
      T. Yokoi, Y. Oshima, K. Matsunaga
    • Journal Title

      Journal of Physics and Chemistry of Solids

      Volume: 173 Pages: 111114-111114

    • DOI

      10.1016/j.jpcs.2022.111114

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Atomic structures and stability of finite-size extended interstitial defects in silicon: Large-scale molecular simulations with a neural-network potential2022

    • Author(s)
      M. Ohbitsu, T. Yokoi, Y. Noda, E. Kamiyama, T. Ushiro, H. Nagakura, K. Sueoka, K. Matsunaga
    • Journal Title

      Scripta Materialia

      Volume: 214 Pages: 114650-114650

    • DOI

      10.1016/j.scriptamat.2022.114650

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Accurate prediction of grain boundary structures and energetics in CdTe: a machine-learning potential approach2022

    • Author(s)
      T. Yokoi, K. Adachi, S. Iwase, K. Matsunaga
    • Journal Title

      Physical Chemistry Chemical Physics

      Volume: 24 Issue: 3 Pages: 1620-1629

    • DOI

      10.1039/d1cp04329c

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Preferential Growth Mode of Large-Sized Vacancy Clusters in Silicon: A Neural-Network Potential and First-Principles Study2021

    • Author(s)
      T. Ushiro, T. Yokoi, Y. Noda, E. Kamiyama, M. Ohbitsu, H. Nagakura, K. Sueoka, K. Matsunaga
    • Journal Title

      Journal of Physical Chemistry C

      Volume: 125 Issue: 48 Pages: 26869-26882

    • DOI

      10.1021/acs.jpcc.1c07973

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Artificial-neural-network descriptor and interatomic potential for molecular simulations of lattice defects2022

    • Author(s)
      T. Yokoi
    • Organizer
      6th International Symposium on Frontier in Materials Science
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Grain boundary structures and energetics in CdTe: An artificial-neural-network interatomic potential and first-principles approach2022

    • Author(s)
      T. Yokoi, K. Adachi, Y. Oshima1, K. Matsunaga
    • Organizer
      The 33rd International Photovoltaic Science and Engineering Conference
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Artificial-neural-network potential for accurately predicting atomic structure and physical properties of lattice defects in semiconductors2022

    • Author(s)
      T. Yokoi
    • Organizer
      The 8th International Symposium on Advanced Science and Technology of Silicon Materials
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 格子欠陥の原子構造・特性の予測に向けた ニューラルネットワーク記述子および原子間ポテンシャルの構築2022

    • Author(s)
      横井達矢、大島優、松永克志
    • Organizer
      日本金属学会2022年秋期第171回講演大会
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2021-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi