• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mechanism of autophagosome-selective membrane degradation by Atg15

Research Project

Project/Area Number 21K15045
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 43030:Functional biochemistry-related
Research InstitutionMicrobial Chemistry Research Foundation

Principal Investigator

Maruyama Tatsuro  公益財団法人微生物化学研究会, 微生物化学研究所, 研究員 (60795855)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsオートファジー / リパーゼ / 構造生物学
Outline of Research at the Start

オートファジーにおいて、細胞質成分を包み込んだオートファゴソームは液胞(リソソーム)と融合し、その内包物は分解されて再利用される。これまでに、オートファゴソーム膜の分解を担う液胞内加水分解酵素として、リパーゼAtg15が同定されている。しかしながら、Atg15がどのようにして液胞膜を分解せずにオートファゴソーム膜を選択的に分解するのかは未だ不明である。そこで本研究は、Atg15の構造情報を取得し、酵素活性に必須な構造領域や補因子を同定することによって、Atg15によるオートファゴソーム膜の分解機構を解明することを目的とする。

Outline of Final Research Achievements

Autophagy is an intracellular degradation system, and the degradation of autophagosomes, which are double membrane vesicles, in the vacuole is important. The inner membrane vesicles of autophagosomes released by fusion with the vacuole are thought to be degraded by Atg15, an intravacuolar lipase. However, it is not clear how Atg15 selectively acts on the autophagosome inner membrane without acting on the vacuolar membrane. In this study, we examined the expression and purification of Atg15 with reference to highly accurate structure prediction and discussed the mechanism of membrane lipid degradation.

Academic Significance and Societal Importance of the Research Achievements

液胞(リソソーム)における選択的な脂質膜分解は、ヒトを含む真核生物に普遍的な現象であるが、そのメカニズムの詳細は解明されていない。Atg15は、520アミノ酸残基から成るリパーゼと推定されているが、リパーゼ活性を担う通常の構造ドメインよりも約200アミノ酸残基以上も長いことから、Atg15に固有な機能に関連した構造領域を有することが強く示唆される。高精度立体構造予測が得られたことで、Atg15の酵素活性の制御の仕組みを理解する足掛かりになることが期待される。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (10 results)

All 2023 2021 Other

All Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 5 results) Presentation (1 results) Remarks (3 results)

  • [Journal Article] Complete set of the Atg8-E1-E2-E3 conjugation machinery forms an interaction web that mediates membrane shaping2023

    • Author(s)
      Alam Jahangir Md.、Maruyama Tatsuro、Noshiro Daisuke、Kakuta Chika、Kotani Tetsuya、Nakatogawa Hitoshi、Noda Nobuo N.
    • Journal Title

      Nature Structural & Molecular Biology

      Volume: 31 Issue: 1 Pages: 170-178

    • DOI

      10.1038/s41594-023-01132-2

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Mechanisms of mitochondrial reorganization2023

    • Author(s)
      Maruyama Tatsuro、Hama Yutaro、Noda Nobuo N
    • Journal Title

      The Journal of Biochemistry

      Volume: 175 Issue: 2 Pages: 167-178

    • DOI

      10.1093/jb/mvad098

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Protocol for real-time imaging of membrane fission by mitofissin2023

    • Author(s)
      Maruyama Tatsuro、Noda. Nobuo N.
    • Journal Title

      STAR Protocols

      Volume: 4 Issue: 4 Pages: 102590-102590

    • DOI

      10.1016/j.xpro.2023.102590

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy2023

    • Author(s)
      Fukuda Tomoyuki, Furukawa Kentaro, Maruyama Tatsuro, ..., Klionsky J. Daniel, Noda N. Nobuo, Kanki Tomotake.
    • Journal Title

      Molecular Cell

      Volume: - Issue: 12 Pages: 2045-2058.e9

    • DOI

      10.1016/j.molcel.2023.04.022

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis2021

    • Author(s)
      Maruyama Tatsuro、Alam Jahangir Md.、Fukuda Tomoyuki、Kageyama Shun、Kirisako Hiromi、Ishii Yuki、Shimada Ichio、Ohsumi Yoshinori、Komatsu Masaaki、Kanki Tomotake、Nakatogawa Hitoshi、Noda Nobuo N.
    • Journal Title

      Nature Structural & Molecular Biology

      Volume: 28 Issue: 7 Pages: 583-593

    • DOI

      10.1038/s41594-021-00614-5

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Delineating the lipidated Atg8 structure for unveiling its hidden activity in autophagy2021

    • Author(s)
      Maruyama Tatsuro、Noda Nobuo N.
    • Journal Title

      Autophagy

      Volume: 17 Issue: 10 Pages: 3271-3272

    • DOI

      10.1080/15548627.2021.1961075

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] リン酸化を契機とした多価相互作用によりマイトファジーは始動する2023

    • Author(s)
      丸山達朗、中山結稀、劉洋、岡本浩二、野田展生
    • Organizer
      第46回日本分子生物学会年会
    • Related Report
      2023 Annual Research Report
  • [Remarks] 微生物化学研究所HP

    • URL

      https://www.bikaken.or.jp/

    • Related Report
      2023 Annual Research Report
  • [Remarks] 微生物化学研究所HP

    • URL

      https://www.bikaken.or.jp/laboratories/structuralbiology/summary.html

    • Related Report
      2022 Research-status Report 2021 Research-status Report
  • [Remarks] 新規ミトコンドリア分裂因子を発見

    • URL

      https://www.bikaken.or.jp/pr/pdf/20230516Noda,%20Maruyama.pdf

    • Related Report
      2022 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi