Project/Area Number |
21K15357
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 48040:Medical biochemistry-related
|
Research Institution | Kyoto University (2022-2023) Hokkaido University (2021) |
Principal Investigator |
Hirota Akira 京都大学, 高等研究院, 特定研究員 (20847181)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 多能性幹細胞 / ハイドロゲル / 幹細胞 / ES/iPS細胞 / バイオマテリアル / 幹細胞ニッチ |
Outline of Research at the Start |
ES細胞やiPS細胞などの高度な多能性を持つ幹細胞は再生医療の基盤資源である。しかし、その維持や分化誘導は多種類の増殖因子を必要とし、高いコストや再現性、効率に課題が残されている。この問題を解決するため、本研究では従来にない視点で、新規培養基板を開発する。すなわち、表面電荷の制御可能な合成ハイドロゲルを用いて、ES/iPS細胞の幹細胞性や分化の制御が可能な革新的培養基板を創出する。荷電性基質による幹細胞機能制御の原理の解明は新しい学問領域の創出につながると同時に、電荷による多能性幹細胞の制御法の確立は再生医療の精度を向上させ、未来の医療に大きく貢献することが期待できる。
|
Outline of Final Research Achievements |
Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are fundamental resources for regenerative medicine. However, their maintenance and differentiation induction require various growth factors, posing challenges in terms of high costs, reproducibility, and efficiency. To address this issue, this study attempted to develop novel culture scaffold. Using synthetic hydrogels with positive charges and mouse ES cells, it was found that surface charge influences the signals required to maintain stem cell function. In addition, we have also examined in human cells and found that part of this effect was successfully demonstrated. These results provide a new insight into the connection between the surface charge on the culture substrate and the signals that maintain stemness, and bring us closer to realizing the creation of new biomaterials that control stemness.
|
Academic Significance and Societal Importance of the Research Achievements |
ES/iPS細胞などの多能性幹細胞は、周囲の環境の微妙な変化が、未分化性や分化能に重大な影響を及ぼす。本研究では多能性幹細胞の未分化性の維持に着目し、組成が明確な合成ハイドロゲルを用いることで、幹細胞機能を制御する新たな足場の物理的な性質とその分子メカニズムの理解が前進した。これは「細胞外基質の様々な性質が幹細胞機能にどのように影響するのか」という細胞生物学上の重要課題の解明に貢献するものである。今後、この成果を基に、合成培養基質を用いて幹細胞機能を自在に制御するという新たな潮流を創造できると考えている。
|