Project/Area Number |
21K17735
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 60060:Information network-related
|
Research Institution | Reitaku University (2022-2023) Keio University (2021) |
Principal Investigator |
Yin Chen 麗澤大学, 工学部, 准教授 (60773124)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 情報ネットワーク / IoT / センシング / エッジコンピューティング / Urban Sensing / Mobile computing / Sensing system / garbage counting / object detection / automotive sensing / urban sensing / edge computing |
Outline of Research at the Start |
ゴミ収集動画を用い、物体検出及び追跡技術による、収集されたゴミ袋の数を自動的に計数する知的なセンシングシステムを開発し、藤沢市のゴミ清掃車に装着し実証実験を行う。細粒度的な都市ゴミのセンシングシステムが世界中の最初の試みとして、本研究は、a)提案されたシステムで精度と処理速度をに評価し、b)収集されたデータの応用性を調査し、c)新しい車両エッジ中心のコンピューティングパラダイムを検証する。
|
Outline of Final Research Achievements |
This research and development project aimed to create an efficient system for collecting and analyzing waste discharge data in towns using garbage trucks. Specifically, we accomplished the following: 1)Developed an algorithm to automatically count garbage bags using a device with a GPU that can be mounted on garbage trucks. 2) Deployed these devices in multiple municipalities to verify the system's effectiveness. 3) Built a platform for analyzing collected data, including forecasting waste discharge and creating collection maps. 4)Published academic papers and advanced the practical implementation in several municipalities. Through this, we established a new system to improve the efficiency of waste management in towns.
|
Academic Significance and Societal Importance of the Research Achievements |
学術研究について、本研究は車の移動力、データとそれに設置したエッジデバイスを活かした高次元の生データ処理を実践したセンシングシステムの日本初の研究開発であり、関連分野の研究開発を大きく推進したと言える。 社会的意義としては、本研究開発は日本の都市部における排出量をより精度高く、かつより精緻に把握可能となり、地方自治体のエビデンスベースのごみ排出管理行政業務を大きく推進させる。又、得られたごみ排出量データは都市計画、廃棄物処理などの関連分野に学術的・実用的価値の高いデータを提供でき、その分野の発展ににつながる。
|