• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Secure, Precise and Fast Sequential Pattern Mining with Learning Data Distribution

Research Project

Project/Area Number 21K17746
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60080:Database-related
Research InstitutionOchanomizu University (2023)
Tokyo Institute of Technology (2021-2022)

Principal Investigator

Le Hieu Hanh  お茶の水女子大学, 文理融合 AI・データサイエンスセンター, 准教授 (60813996)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywordsシーケンス解析 / 電子カルテ / データ保護 / data mining / privacy / medical data / differential privacy / recommendation
Outline of Research at the Start

This study aims to present a method for eliminating the need for trust in SPM while preserving privacy and providing secure, precise, and fast sequential data analysis that carefully learns the data distribution. The execution time should be reduced via parallel computation that utilizes modern hardware such as scalable multi-core CPUs. The feasibility of the proposed method will be studied using both open datasets and real medical data.

Outline of Final Research Achievements

Secure sequential data analysis of sequential medical data has been extensively studied. In detail, several methods to analyze the sequence variants (SV) from more than one hospital have been designed, such as comparing SVs, identifying factors that led to branches in SVs, etc. The proposed methods were rigorously evaluated using real hospital medical data on multiple diseases.
Then, an appropriate amount of noise is added to the original frequency to ensure privacy when estimating the frequency of the sequences. Only related data is added to the analysis based on data distribution and medical meaningfulness. Finally, a secure experimental environment using the cloud in which the data access control is carefully managed has been suggested for a secure data analysis.

Academic Significance and Societal Importance of the Research Achievements

この研究は、セキュアなシーケンシャルデータ解析に大きな波及効果をもたらす。これにより、医療や小売業など多くのビジネスにおいて、安全にカスタマイズ可能なツールやサービスを提供するアプリケーションの範囲が拡大できる。顧客向けのサービスや製品を安全にカスタマイズするだけでなく、産業企業内のサプライチェーン管理を効率的に最適化する可能性を見せることができる。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (15 results)

All 2023 2022 2021

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (12 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Methods for Analyzing Medical-Order Sequence Variants in Sequential Pattern Mining for Electronic Medical Record Systems2023

    • Author(s)
      Hieu Hanh Le, Tatsuhiro Yamada, Yuichi Honda, Takatoshi Sakamoto, Ryosuke Matsuo, Tomoyoshi Yamazaki, Kenji Araki, Haruo Yokota
    • Journal Title

      ACM Transactions on Computing for Healthcare

      Volume: 4, issue 1, no. 3 Issue: 1 Pages: 1-28

    • DOI

      10.1145/3561825

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] シーケンスバリアントの比較と電子カルテの分析への応用2023

    • Author(s)
      Yuqing Li, Le Hieu Hanh, 松尾亮輔, 山崎友義, 荒木賢二, 横田治夫
    • Journal Title

      日本データベース学会データドリブンスタディーズ論文誌

      Volume: 1, no.5 Pages: 1-8

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Comparison of Sequence Variants and the Application in Electronic Medical Records2022

    • Author(s)
      Yuqing Li, Hieu Hanh Le, Ryosuke Matsuo, Tomoyoshi Yamazak, Kenji Araki, Haruo Yokota
    • Journal Title

      Proceeding of the 33rd International Conference on Database and Expert Systems Applications (DEXA2022), Part 2

      Volume: 13427 Pages: 117-130

    • DOI

      10.1007/978-3-031-12426-6_10

    • ISBN
      9783031124259, 9783031124266
    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Presentation] 千年カルテの匿名加工医療情報を利用した多医療機関の電子カルテに対するシーケンス解析2023

    • Author(s)
      Le Hieu Hanh, 松尾亮輔, 山﨑 友義, 横田 治夫
    • Organizer
      第43回医療情報学連合大会(第24回日本医療情報学会学術大会)
    • Related Report
      2023 Annual Research Report
  • [Presentation] COVID-19の電子カルテ履歴からの医療指示シーケンスパターン変化時期の抽出2023

    • Author(s)
      趙 子泰, Le Hieu Hanh, 山﨑 友義, 荒木 賢二, 横田 治夫
    • Organizer
      第27回日本医療情報学会春季学術大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Analysis of Transitions in Differences between Frequent Medical-order Sequences for COVID-192023

    • Author(s)
      Zitai Zhao, Yuki Yasumitsu, Hieu Hanh Le, Tomoyoshi Yamazaki, Kenji Araki, Haruo Yokota
    • Organizer
      The 36th IEEE International Symposium on Computer-Based Medical Systems
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 動的に医療指示種類を変更したシーケンス解析における特徴的な治療パターン抽出2023

    • Author(s)
      黒川 健人, Le Hieu Hanh, 松尾 亮輔, 山崎 友義, 荒木 賢二, 横田 治夫
    • Organizer
      第15回データ工学と情報マネジメントに関するフォーラム
    • Related Report
      2022 Research-status Report
  • [Presentation] COVID-19に関する頻出医療指示パターンの時期による差異と差異発生時期の可視化2023

    • Author(s)
      Zhao Zitai, Le Hieu Hanh, 松尾 亮輔, 山﨑 友義, 荒木 賢二, 横田 治夫
    • Organizer
      第15回データ工学と情報マネジメントに関するフォーラム
    • Related Report
      2022 Research-status Report
  • [Presentation] クラスタリングを用いた多病院間の頻出医療指示パターン比較2023

    • Author(s)
      安光 夕輝, Le Hieu Hanh, 松尾 亮輔, 山﨑 友義, 荒木 賢二, 横田 治夫
    • Organizer
      第15回データ工学と情報マネジメントに関するフォーラム
    • Related Report
      2022 Research-status Report
  • [Presentation] COVID-19の異なる医療機関と時期における頻出治療パターンの比較2022

    • Author(s)
      Zhao Zitai, Le Hieu Hanh, 松尾 亮輔, 山﨑 友義, 荒木 賢二, 横田 治夫
    • Organizer
      第42回医療情報学連合大会
    • Related Report
      2022 Research-status Report
  • [Presentation] 数医療機関間の頻出医療指示パターン比較手法2022

    • Author(s)
      横田治夫, Le Hieu Hanh, Li Yuqing, 松尾亮輔, 山﨑友義, 荒木賢二
    • Organizer
      第26回日本医療情報学会春季学術大会
    • Related Report
      2022 Research-status Report
  • [Presentation] MERJ: Medical Entity-Relation Extraction System for Japanese Clinical Texts2022

    • Author(s)
      An Wang, Hieu Hanh Le, Ryosuke Matsuo, Tomoyoshi Yamazaki, Kenji Araki, Haruo Yokota
    • Organizer
      The 14th Forum on Data Engineering and Information Management (DEIM 202)
    • Related Report
      2021 Research-status Report
  • [Presentation] シーケンシャルパターンマイニングに基づく多病院間の頻出治療パターンの比較2022

    • Author(s)
      Li Yuqing, Le Hieu Hanh, 松尾亮輔, 山崎友義, 荒木賢二, 横田治夫
    • Organizer
      第14回データ工学と情報マネジメントに関するフォーラム予稿集
    • Related Report
      2021 Research-status Report
  • [Presentation] 医療データのシーケンス解析とその課題2022

    • Author(s)
      横田治夫, Le Hieu Hanh, 松尾亮輔, 山﨑友義, 荒木賢二
    • Organizer
      第12回日本医療情報学会「医用人工知能研究会」人工知能学会「医用人工知能研究会」合同研究会
    • Related Report
      2021 Research-status Report
  • [Presentation] Sequential Pattern Mining of Large Combinable Items with Values for a Set-of-items Recommendation2021

    • Author(s)
      Hieu Hanh Le, Yutaka Horino, Tomoyoshi Yamazaki, Kenji Araki, Haruo Yokota
    • Organizer
      The 34 IEEE International Symposium on Computer-based Medical Systems (CBMS 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi