• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Automatic Configuration of Preference-based Evolutionary Multi-objective Optimization Algorithms

Research Project

Project/Area Number 21K17824
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61040:Soft computing-related
Research InstitutionYokohama National University

Principal Investigator

Tanabe Ryoji  横浜国立大学, 大学院環境情報研究院, 助教 (80780923)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords進化計算 / 進化型多目的最適化 / 選好に基づく最適化 / 自動アルゴリズム生成 / 意思決定 / 指標 / ブラックボックス最適化 / 多目的最適化 / 選好に基づく多目的進化型アルゴリズム / パラメータチューニング
Outline of Research at the Start

多目的最適化の最終目標は, ユーザが選好するパレート最適解の獲得である. ユーザの選好を満たす非劣解集合のみを近似する選好に基づく多目的進化型アルゴリズムは, 有用な多目的最適化ツールである. しかし, 非エキスパートなユーザが独力で選好に基づく多目的進化型アルゴリズムを実問題に適用するのは, ほぼ不可能である. これは, 多目的進化型アルゴリズムの選定, UI設計, ハイパーパラメータチューニングといった煩雑な工程が必要であったためである. そこで, 本研究ではこれら全ての工程を自動化する枠組みを提案する. 提案する自動生成の枠組みを実問題に適用し, その工学的実用性を明らかにすることを目指す.

Outline of Final Research Achievements

Multi-objective optimization aims to simultaneously minimize multiple objective functions that conflict with each other. Multi-objective optimization problems can be found in a wide range of engineering applications. Although a preference-based multi-objective evolutionary algorithm is a useful approach to finding a set of non-dominated solutions preferred by a decision-maker, its performance strongly depends on the algorithmic configuration. In addition, it is difficult to optimize the algorithm configuration by means of hand-tuning. To address this issue, this work studied a framework for automated generation of preference-based multi-objective evolutionary algorithms. Secondarily, this work also addressed benchmarking issues in preference-based multi-objective evolutionary algorithms.

Academic Significance and Societal Importance of the Research Achievements

本研究で開発した選好に基づく多目的進化型アルゴリズムを自動生成する枠組みを利用すれば, 非専門家であるユーザでも手軽に最適化が可能となった. また, 自動アルゴリズム構成は研究者がこれまで思いつかなかったような構成を生成する場合が多い. そのため, 高性能かつ新規性のある多目的進化型アルゴリズムが自動生成されることが期待でき, 本研究分野に新しい視点をもたらすことが期待される.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (7 results)

All 2024 2023 2022 Other

All Int'l Joint Research (2 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results,  Open Access: 1 results)

  • [Int'l Joint Research] University of Exeter(英国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University of Exeter(英国)

    • Related Report
      2022 Research-status Report
  • [Journal Article] Investigating Normalization in Preference-based Evolutionary Multi-objective Optimization Using a Reference Point2024

    • Author(s)
      Ryoji Tanabe
    • Journal Title

      Applied Soft Computing

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Quality Indicators for Preference-Based Evolutionary Multi-Objective Optimization Using a Reference Point: A Review and Analysis2024

    • Author(s)
      Ryoji Tanabe, Ke Li
    • Journal Title

      IEEE Transactions on Evolutionary Computation

      Volume: - Issue: 6 Pages: 1575-1589

    • DOI

      10.1109/tevc.2023.3319009

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the Unbounded External Archive and Population Size in Preference-based Evolutionary Multi-objective Optimization Using a Reference Point2023

    • Author(s)
      Ryoji Tanabe
    • Journal Title

      Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2023)

      Volume: - Pages: 749-758

    • DOI

      10.1145/3583131.3590511

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Quality Indicators for Preference-based Evolutionary Multi-objective Optimization Using a Reference Point: A Review and Analysis2023

    • Author(s)
      Ryoji Tanabe, Ke Li
    • Journal Title

      arXiv

      Volume: -

    • Related Report
      2022 Research-status Report
    • Open Access / Int'l Joint Research
  • [Journal Article] A Two-phase Framework with a Bezier Simplex-based Interpolation Method for Computationally Expensive Multi-objective Optimization2022

    • Author(s)
      Ryoji Tanabe, Youhei Akimoto, Ken Kobayashi, Hiroshi Umeki, Shinichi Shirakawa, Naoki Hamada
    • Journal Title

      Proceedings of ACM Genetic and Evolutionary Computation Conference (GECCO2022)

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi