Project/Area Number |
21K18608
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 13:Condensed matter physics and related fields
|
Research Institution | Keio University |
Principal Investigator |
Hayano Motoshi 慶應義塾大学, 医学部(信濃町), 特任講師 (30593644)
|
Co-Investigator(Kenkyū-buntansha) |
岡嶋 孝治 北海道大学, 情報科学研究院, 教授 (70280998)
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | レオロジーマッピング / パルスフォースAFM法 / ジスフィルド結合 / Ero1 / 弾性 / 原子間力顕微鏡 / 老化 / 数理モデル / 組織弾性モダリティ |
Outline of Research at the Start |
加齢や疾患によって、組織の「弾性」が変化することが報告されてきているが、その分子機構及び意義はいまだに不明である。本研究ではナノスケールからミリスケールの多細胞システムを計測可能なAFMを用いて弾性と老化のミリスケールにおける変化を捉えるとともに、それらの臓器や細胞における分子機序を明らかにする。これらによって組織弾性モダリティの構築し、老化や疾患の予測が可能になるとともに、創薬開発につなげる。
|
Outline of Final Research Achievements |
In this study, a novel atomic force microscope (AFM) was constructed with the capability to measure the mechanical properties of an extensive number of cells. The microscope was integrated with an upright optical microscope and provided a sub-micrometre resolution for measuring the mechanical properties of the observed area. Additionally, the wide displacement scanner enabled mapping of an area of up to 1 mm. The rheological measurement of tissue-like samples with varying elastic moduli by several orders of magnitude and the analysis of the molecular mechanism were advanced by identifying disulfide bonds of proteins and changes in gene expression of enzymes such as Ero1 as the molecular mechanism.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでAFMやMTCを用いた「細胞単位」の研究で、がん細胞は細胞内骨格や細胞間接着因子の発現が異なるため、癌の悪性度や転移性の違いが報告されている。細胞はメカニカルセンサーを介して外部環境のシグナルを受け取り、これによって幹細胞の機能を制御する。本研究によて、組織中の粘弾性を高速かつ精密に計測し、高い「空間分解能」を持つレオロジーマッピング測定が可能な改良型パルスフォースAFM法が開発した。数100-1000個の細胞の粘弾性を一度に測定し、加齢に伴う変化の様子を捉える要素技術が進展しており、他に類を見ない技術である。
|