Project/Area Number |
21K19082
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 38:Agricultural chemistry and related fields
|
Research Institution | Osaka University |
Principal Investigator |
Seki Hikaru 大阪大学, 大学院工学研究科, 准教授 (30392004)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2022: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2021: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | トリテルペン配糖体 / サポニン / 生合成 / メタボロン / 合成生物学 / マメ科植物 / トリテルペノイド / 酵素 / 代謝経路 / トリテルペンサポニン / チャネリング / 酵母 |
Outline of Research at the Start |
トリテルペン配糖体は植物が生産する有用物質であり、有名なものに甘味料等として使用される甘草のグリチルリチンがある。植物細胞ではグリチルリチンの生合成に関わる酵素タンパク質群が細胞内の小胞体膜上で「代謝酵素複合体(メタボロン)」を形成することによって効率良くグリチルリチンを生合成していると考えられているが実験的な証明は不足している。そこで本研究では、グリチルリチン生合成酵素が互いにタンパク質-タンパク質相互作用をするかを調べるとともに、大腸菌細胞内でグリチルリチン生合成酵素間のタンパク質-タンパク質相互作用を人工的につくりだすことでグリチルリチン生産が可能かを検証する。
|
Outline of Final Research Achievements |
Triterpene glycosides, also known as saponins, are a group of small molecules found in plants. They contain various functional components, such as glycyrrhizin, a sweetening agent present in licorice root, which is used as a natural sweetener. Metabolon, a temporary structural-functional complex formed by sequential enzymes in a metabolic pathway, can be considered a shortcut in the pathway that enhances production efficiency. This study explores the potential protein-protein interactions among multiple enzymes involved in the multi-step saponin biosynthesis. Additionally, it investigates the possibility of enhancing saponin production in recombinant microbial cells by promoting the formation of an artificial enzyme complex (metabolon) within these cells.
|
Academic Significance and Societal Importance of the Research Achievements |
希少な植物に特有の有用機能性成分を培養が容易な微生物を用いて、希少な植物原料に依存せず安定・安価に生産しようとする研究が多くなされているが、本来植物細胞が行っている多段階にわたる一連の酵素反応を微生物細胞内において再現することは必ずしも容易ではなく、実用化には生産性の向上が求められる。本研究は、微生物細胞内で多くの生合成酵素の複合体化を人工的に促進することで生産性の向上が可能であることを示したことから社会的意義がある。
|