Project/Area Number |
21K20315
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | Saitama University |
Principal Investigator |
Yohei Sakurai 埼玉大学, 理工学研究科, 准教授 (90907958)
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | Riemann幾何学 / 離散幾何解析 / Ricci曲率 / 幾何学流 / Ricci流 / 調和写像流 / 平均曲率流 / 調和写像 / 測度距離空間 / CAT空間 / Liouville定理 / グラフ |
Outline of Research at the Start |
Ricci曲率は滑らかなRiemann多様体の曲がり方を測る指標の一つであり,様々な観点から研究が行われてきた.特にRicci流と呼ばれるRicci曲率を用いた幾何学流はPoincar´e予想の解決など幅広い応用を持つことが明らかになっている.近年,Ricci曲率の概念を滑らかでない空間へ導入する試みが為されている.本研究の目的は,離散空間に対してRicci流の概念を導入し,それを用いた幾何解析を展開することである.その第一歩として,Ricci流方程式の優解である優Ricci流に焦点を当てる.時間発展するグラフに対して優Ricci流の概念を導入し,Ricci流理論の展開への足掛かりとする.
|
Outline of Final Research Achievements |
Ricci curvature is one of the most fundamental objects in Riemannian geometry, and it has been studied from various perspectives. Hamilton has introduced a geometric flow called Ricci flow via Ricci curvature, and Perelman has solved the well-known Poincare conjecture based on the Ricci flow theory. In this project, we focus on a super solution to the Ricci flow called super Ricci flow, and obtain several geometric and analytic results for the heat equation along super Ricci flow. On the other hand, in recent years, there are some attempts to introduce the notion of Ricci curvature for non-smooth spaces. In this project, we provide a notion of super Ricci flow for discrete spaces from the viewpoint of the Bakry-Emery theory. We construct some examples, and conclude characterization results via functional inequalities.
|
Academic Significance and Societal Importance of the Research Achievements |
Ricci流はPerelmanによる3次元Poincare予想の解決において重要な役割を果たした.最近Bamlerにより高次元Ricci流の収束理論が発展しており,Perelmanの3次元の場合の結果を包括する理論が確立されつつある.そこでは優Ricci流に沿った熱方程式の幾何解析が鍵となっている.本研究で得られた諸結果は,それらの理論の今後の更なる発展に寄与しうるものであると考えられる.また離散空間上の幾何解析は純粋数学のみならず応用数学の観点からも注目を集めている.本研究で得られたグラフに対する優Ricci流に関する諸結果についても,材料科学や機械学習など他の分野への還元が期待される.
|