• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Existence problems in Hopf-Galois structures and skew braces

Research Project

Project/Area Number 21K20319
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionOchanomizu University

Principal Investigator

TSANG SINYI  お茶の水女子大学, 基幹研究院, 助教 (10908271)

Project Period (FY) 2021-08-30 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsholomorph / 正則部分群 / ホップ・ガロア構造 / skew brace / 有限単純群 / p-groups of class two / multiple holomorph / ホップ・ガロワ構造 / $p$-groups of class two / 巡回拡大 / 巡回群
Outline of Research at the Start

有限群Nのholomorphに含まれる正則部分群Gは,ホップ・ガロワ構造およびskew braceという代数的構造と対応していることが知られている.本研究では,GとNの同型類がどのように関係しているかを調べる.特に,Gが巡回群または概単純群である場合に着目し,Nの同型類を全て特定しようと試みる.さらに,Gが可解群でありNが非可解群となる例が限られているのではないかと思われ,この現象についても深く掘り下げたいと考えている.

Outline of Final Research Achievements

For any finite groups G and N of the same order, let us say that (G,N) is realizable when the holomorph of N contains a regular subgroup isomorphic to G. In this research, for any cyclic group G, we were able to determine the groups N for which (G,N) is realizable. Moreover, we were able to determine the simple groups N for which there exists a solvable group G such that (G,N) is realizable. As a related problem, we also studied the so-called multiple holomorph of some p-groups of class two.

Academic Significance and Societal Importance of the Research Achievements

同位数をもつ有限群GとNに対して,(G,N)がrealizableであることは,ガロア群Gをもつ拡大にタイプNのホップ・ガロア構造が存在すること,及び加法群がNで乗法群がGとなるようなskew braceが存在することと同値である.前者は整数環のガロア加群構造の研究に応用があり,後者はYang-Baxter方程式の集合理論的解と関連していることが知られている.よって,(G,N)がrealizableか否かは重要な問題であり,本研究の成果はこのrealizabilityに関する研究を進展させた.

Report

(3 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • Research Products

    (8 results)

All 2023 2022 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 5 results)

  • [Int'l Joint Research] University of Trento(イタリア)

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Finite $p$-groups of class two with a large multiple holomorph2023

    • Author(s)
      Caranti A.、Tsang Cindy (Sin Yi)
    • Journal Title

      Journal of Algebra

      Volume: 617 Pages: 476-499

    • DOI

      10.1016/j.jalgebra.2022.11.013

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Hopf-Galois structures on cyclic extensions and skew braces with cyclic multiplicative group2022

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Journal Title

      Proceedings of the American Mathematical Society, Series B

      Volume: 9 Issue: 36 Pages: 377-392

    • DOI

      10.1090/bproc/138

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Regular subgroups in the holomorph, fixed point free pairs of homomorphisms, and factorizations of groups2023

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Organizer
      Hopf Algebras & Galois Module Theory
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Non-abelian simple groups which can occur as the additive group of a skew brace with solvable multiplicative group2022

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Organizer
      Oberwolfach Mini-Workshop: Skew Braces and the Yang-Baxter Equation
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Finite $p$-groups of class two with a very large multiple holomorph2022

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Organizer
      Hopf Algebras & Galois Module Theory
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Characterization of the type of Hopf-Galois structures on cyclic extensions2022

    • Author(s)
      Tsang Cindy (Sin Yi)
    • Organizer
      Hopf Algebras & Galois Module Theory
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Characterization of the type of Hopf-Galois structures on cyclic extensions2022

    • Author(s)
      TSANG SIN YI
    • Organizer
      Hopf Algebras and Galois Module Theory 2022
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2021-10-22   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi