• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of dynamical systems of random relaxed Newton methods

Research Project

Project/Area Number 21K20323
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionKyoto University

Principal Investigator

Watanabe Takayuki  京都大学, 理学研究科, 特定研究員 (50913282)

Project Period (FY) 2021-08-30 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Keywordsランダム力学系 / ニュートン法 / ランダムアルゴリズム / 複素解析 / ランダム緩和ニュートン法 / 確率分岐 / multiplicative noise / ランダムニュートン法 / 複素力学系 / 確率的アルゴリズム
Outline of Research at the Start

与えられた関数の根を数値的に求める方法にニュートン法と呼ばれるものがあります.そのランダム化に関する数学理論を発展させることで,革新的な確率的アルゴリズムを提案することが本研究の目的です.真の根との数値誤差を評価することや根への収束速度とノイズとの関係を明確にすることを目指します.社会実装においても力学系理論においても重要なこれらの問いを,ランダム力学系という独自の視点から統一的に解決し,数値解析分野と力学系理論に新しい価値を創造することが大目標です.

Outline of Final Research Achievements

The PI implemented the random relaxed Newton methods and made several mathematical predictions through numerical experiments. For example, it was known that the root-finding algorithm worked well when the noise was sufficiently large, but for some examples, the random algorithm worked well even with very small noise. The PI also found numerically that the size of noise required for the algorithm is closely related to the parameter at which the family of the deterministic relaxed Newton maps bifurcates. The PI expects that mathematical proof of this conjecture will lead to the development of better algorithms.

Academic Significance and Societal Importance of the Research Achievements

工学を含むあらゆる数理的な課題の中で,与えられた関数の零点(根)を求めることはとても基本的で重要な問題です.本研究は,有名な求根アルゴリズムであるニュートン法にあえてノイズを入れることでアルゴリズムを改善できるか,という着想に基づいています.得られた成果として,ランダム力学系の確率分岐は決定論的な分岐よりも早く起こるだろう,という数学的にも実用上も重要な予想を発見するに至りました.これは,力学系理論の研究を新しい観点から開拓するという学術的な意義があります.また,実社会に対しても,(ランダム)求根アルゴリズムの改善を通して大きな影響を与えられる可能性を秘めています.

Report

(3 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • Research Products

    (13 results)

All 2023 2022 2021

All Journal Article (2 results) (of which Open Access: 2 results) Presentation (11 results) (of which Int'l Joint Research: 2 results,  Invited: 5 results)

  • [Journal Article] On the stochastic bifurcations of random holomorphic dynamical systems2023

    • Author(s)
      Takayuki Watanabe
    • Journal Title

      京都大学数理解析研究所講究録(掲載予定)

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Journal Article] On the stochastic bifurcations regarding random iterations of polynomials of the form $z^2 + c_n$2022

    • Author(s)
      Takayuki Watanabe
    • Journal Title

      arXiv

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Presentation] An estimates for Random Relaxed Newton Methods2023

    • Author(s)
      Takayuki Watanabe
    • Organizer
      International Workshop on Ergodic Theory, Dynamical Systems, and Climate Sciences (Poster Session))
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] On the stochastic bifurcations of random holomorphic dynamical systems2022

    • Author(s)
      渡邉天鵬
    • Organizer
      ランダム力学系・非自励力学系研究の展望:理論と応用
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] On the stochastic bifurcations regarding random iterations of polynomials of the form $z^2+c_n$2022

    • Author(s)
      Takayuki Watanabe
    • Organizer
      The POSTECH Conference 2022 on Complex Analytic Geometry
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Total disconnectedness of the random Julia sets of polynomials of the form $z^2 + c_n$2022

    • Author(s)
      渡邉天鵬
    • Organizer
      複素力学系と関連分野
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] On the stochastic bifurcations regarding random iterations of polynomials of the form $z_2+c^n$2022

    • Author(s)
      渡邉天鵬
    • Organizer
      Random topics on Teichmuller theory
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] On the stochastic bifurcations regarding random iterations of polynomials of the form $z^2+c_n$2022

    • Author(s)
      渡邉天鵬
    • Organizer
      第 56 回函数論サマーセミナー
    • Related Report
      2022 Annual Research Report
  • [Presentation] On the stochastic bifurcations regarding random iterations of polynomials of the form $z^2+c_n$2022

    • Author(s)
      渡邉天鵬
    • Organizer
      日本数学会 2022 年度年会(函数論分科会)
    • Related Report
      2022 Annual Research Report
  • [Presentation] ランダム複素力学系におけるマルコフ作用素の性質2022

    • Author(s)
      渡邉天鵬
    • Organizer
      北見工業大学
    • Related Report
      2022 Annual Research Report
  • [Presentation] On the stochastic bifurcations regarding random iterations of polynomials of the form $z^2+c_n$2022

    • Author(s)
      渡邉天鵬
    • Organizer
      エルゴード理論とその周辺
    • Related Report
      2022 Annual Research Report
  • [Presentation] ランダム複素力学系の平均安定性とその分岐2021

    • Author(s)
      渡邉天鵬
    • Organizer
      ランダム力学系および多価写像力学系理論の総合的研究,京都大学数理解析研究所
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] The bifurcation of random holomorphic dynamical systems2021

    • Author(s)
      渡邉天鵬
    • Organizer
      複素力学系の諸相,京都大学数理解析研究所
    • Related Report
      2021 Research-status Report
    • Invited

URL: 

Published: 2021-10-22   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi