• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Higher-dimensional category theory and its homotopical generalisation

Research Project

Project/Area Number 21K20329
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionKyushu University

Principal Investigator

MAEHARA Yuki  九州大学, マス・フォア・インダストリ研究所, 学術研究員 (80905729)

Project Period (FY) 2021-08-30 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Keywords高次圏 / (∞,n)圏 / 圏論 / 高次圏論 / ホモトピー論
Outline of Research at the Start

圏論は代数を抽象化して捉えることを可能にする分野であるが, より一般にこの抽象化をn回繰り返した視点をn圏論と呼ぶ. 本研究はn圏論のホモトピー論的拡張である(∞,n)圏論の理解を深めることを目的とする. より具体的には, (∞,n)圏論の中で現在扱われているGrayテンソルや形式的モナド理論といった概念が, 対応するn圏論的なものを適切な意味で拡張していることの証明を目指す.

Outline of Final Research Achievements

Category theory is a branch of mathematics based on the idea “to understand an algebraic object X is to understand how X relates to other objects Y”. If one is interested in X not merely as an algebraic object but something with geometric structure, one must also take into account higher dimensional relationships, such as how different relationships between X and Y relate to each other. Such study is called higher category theory. The increase in the number of dimensions often complicates computations involved in higher category theory, and the aim of this project was to simplify them in certain cases.

Academic Significance and Societal Importance of the Research Achievements

本研究は高次圏論と呼ばれる分野の基礎となる部分を固めるものです。より具体的には、高次圏論への異なるアプローチが本質的には同じ理論に繋がっていることを示したり、また高次圏に関する計算を簡単にする方法を確立したりしました。高次圏論は幾何的な性質を持つ数学分野を抽象的に扱うためのものなので、今回の結果は将来的に幾何の理解を深める役に立つことが期待されます。また高次圏論は、量子計算と深い関わりのある位相場理論や、計算機の合流性と呼ばれる性質について考えるための言語として使われることもあり、そういった動機からも高次圏論について理解を深める意義があります。

Report

(3 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • Research Products

    (10 results)

All 2023 2022 2021 Other

All Int'l Joint Research (4 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (4 results) (of which Int'l Joint Research: 2 results)

  • [Int'l Joint Research] Macquarie University(オーストラリア)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Johns Hopkins University(米国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] University of Western Ontario(カナダ)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Stockholm University(スウェーデン)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Orientals as free weak ω-categories2023

    • Author(s)
      Yuki Maehara
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 227 Issue: 3 Pages: 107230-107230

    • DOI

      10.1016/j.jpaa.2022.107230

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Equivalence of cubical and simplicial approaches to (∞,n)-categories2023

    • Author(s)
      Doherty Brandon, Kapulkin Krzysztof, Yuki Maehara
    • Journal Title

      Advances in Mathematics

      Volume: 416 Pages: 108902-108902

    • DOI

      10.1016/j.aim.2023.108902

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Coinductive equivalences in algebraic weak ω-categories2023

    • Author(s)
      前原 悠究
    • Organizer
      理論計算機科学と圏論ワークショップ CSCAT 2023
    • Related Report
      2022 Annual Research Report
  • [Presentation] Coinductive equivalences in algebraic weak ω-categories2022

    • Author(s)
      Yuki Maehara
    • Organizer
      The 66th Annual Meeting of the Australian Mathematical Society
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Orientals as free weak ω-categories2021

    • Author(s)
      Yuki Maehara
    • Organizer
      Category Theory CT20→21
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Equivalence of cubical and simplicial approaches to weak ω-categories2021

    • Author(s)
      前原 悠究
    • Organizer
      代数, 論理, 幾何と情報科学研究集会 ALGI 32
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-10-22   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi