• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of infinite invariant measures for dissipative random dynamical systems and application to infinite mixing

Research Project

Project/Area Number 21K20330
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionKitami Institute of Technology

Principal Investigator

Toyokawa Hisayoshi  北見工業大学, 工学部, 助教 (30907762)

Project Period (FY) 2021-08-30 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords絶対連続不変測度 / 物理的測度 / 混合性 / マルコフ作用素 / マルコフ作用素コサイクル / エルゴード性 / ランダム力学系 / 不変測度 / 無限不変測度 / 区分凸ランダム写像 / 物理的ノイズ / リャプノフ指数 / 散逸系 / 無限測度エルゴード理論 / 無限測度混合性
Outline of Research at the Start

現象の時間発展を記述する力学系,および力学系にゆらぎが加わったランダム力学系に対して,絶対連続な不変測度が存在するかどうかを調べる事は,エルゴード理論の基本的かつ重要な問題である.従来の研究では主に保存的な系を対象とし,(非可逆な)散逸的な系にいつ絶対連続な不変測度が存在し,如何なる統計的性質を保有するかは未解決の問題であった.本研究は,散逸的な力学系/ランダム力学系に焦点を絞り,絶対連続な無限不変測度の存在ならびに不変測度を通じた統計的性質 (特に無限測度混合性) を解明する事が目的である.

Outline of Final Research Achievements

Although one of the main purposes, namely obtaining general results for the existence of sigma-finite infinite invariant measures for dissipative systems, has not been accomplished yet, we have succeeded in characterising the finitude of ergodic absolutely continuous invariant probability measures, which are in particular physical measures, with the maximal support for (random) dynamical systems. From this result, we found that even if one considers random dynamical systems consisting of dissipative maps, it is not rare for them to admit conservative, ergodic and sigma-finite absolutely continuous invariant measures. Additionally, if we replace `ergodicity' with `mixing' in the above finitude property, we have a candidate which could characterises it, and we proceed with this project.

Academic Significance and Societal Importance of the Research Achievements

力学系理論は,物体の運動をはじめとして生物の世代ごとの個体数や気候などの時間発展を記述する数理モデルなど,あらゆる分野で出現し,それらの性質を数学的に研究することは基本的な問題である.さらに力学系に揺らぎが加わったランダム力学系を考えることも現実の物理現象などへの応用上重要である.本研究では,力学系・ランダム力学系について,統計の基礎である大数の法則が成り立つという意味で良い確率が高々有限個存在するための,等価な条件を導入し,様々な具体例についても統計的性質とともに考察することができた.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (18 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (3 results) Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 4 results,  Invited: 5 results)

  • [Int'l Joint Research] Universidade Federal Fluminense(ブラジル)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Universidade Federal Fluminense(ブラジル)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Universidade Federal Fluminense(ブラジル)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Finitude of physical measures for random maps2024

    • Author(s)
      Pablo G.Barrientos, Fumihiko Nakamura, Yushi Nakano, Hisayoshi Toyokawa
    • Journal Title

      Asterisque

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Invariant measures for random piecewise convex maps2024

    • Author(s)
      Inoue Tomoki、Toyokawa Hisayoshi
    • Journal Title

      Nonlinearity

      Volume: 37 Issue: 5 Pages: 055016-055016

    • DOI

      10.1088/1361-6544/ad2ff9

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Arcsine law for random dynamics with a core2023

    • Author(s)
      Nakamura Fumihiko、Nakano Yushi、Toyokawa Hisayoshi、Yano Kouji
    • Journal Title

      Nonlinearity

      Volume: 36 Issue: 3 Pages: 1491-1509

    • DOI

      10.1088/1361-6544/acb398

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Random invariant densities for Markov operator cocycles and random mean ergodic theorem2023

    • Author(s)
      Nakamura Fumihiko、Toyokawa Hisayoshi
    • Journal Title

      Stochastics and Dynamics

      Volume: -

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Lyapunov exponents for random maps2022

    • Author(s)
      Nakamura Fumihiko、Nakano Yushi、Toyokawa Hisayoshi
    • Journal Title

      Discrete and Continuous Dynamical Systems Series B

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Mixing and observation for Markov operator cocycles*2021

    • Author(s)
      Nakamura Fumihiko、Nakano Yushi、Toyokawa Hisayoshi
    • Journal Title

      Nonlinearity

      Volume: 35 Issue: 1 Pages: 66-83

    • DOI

      10.1088/1361-6544/ac355f

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Finitude of physical measures for random maps2023

    • Author(s)
      Toyokawa, Hisayoshi
    • Organizer
      The 43rd Conference on Stochastic Processes and their Applications, Contributed Session Recent progresses on random dynamical systems
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Infinite invariant measures for random maps and their ergodic properties2023

    • Author(s)
      豊川永喜
    • Organizer
      21世紀の複雑系 研究集会 (津田先生古希記念研究集会)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Ergodic sigma-finite invariant measures for random maps with uniformly contractive part2023

    • Author(s)
      豊川永喜
    • Organizer
      エルゴード理論研究集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Finitude of ergodic σ-finite invariant measures for Markov operators2023

    • Author(s)
      Toyokawa Hisayoshi
    • Organizer
      International Workshop on Ergodic Theory, Dynamical Systems, and Climate Sciences
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Finitude of ergodic σ-finite invariant measures for Markov operators2022

    • Author(s)
      Toyokawa Hisayoshi
    • Organizer
      Recent Progress in Ergodic Theory
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Mean constrictivity and ergodic σ-finite invariant measures for Markov operators2022

    • Author(s)
      豊川永喜
    • Organizer
      エルゴード理論研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] Invariant measures for random piecewise convex maps with the common indifferent fixed point2021

    • Author(s)
      Toyokawa Hisayoshi
    • Organizer
      Quantitative aspects in complex analysis, geometry and dynamics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] マルコフ作用素に対する不変測度の存在と一次元ランダム力 学系への応用2021

    • Author(s)
      豊川永喜
    • Organizer
      確率論研究会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] σ-finite invariant measures for Markov operators and the ratio sets for non-invertible transformations2021

    • Author(s)
      豊川永喜
    • Organizer
      ワークショップ「作用素環と力学系」
    • Related Report
      2021 Research-status Report
    • Invited

URL: 

Published: 2021-10-22   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi